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PREFACE 

There can be no serious question about the lndi-
spensability of new instruments for scientific 
acvance; many current discoveries would have been 
quite impossible without use of the specially de­
signed instruments made possible by modern tech­
nology, Instruments that could not have been de­
vised at an earlier stage in history* Improved 
instruments will surely be no less important for 
research progress In the future. 

Graham DuShane, Editor 
Science, 124:771 
26 October 1956 
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I. INTRODUCTION 

In paramecin and other motile microorganisms» a con­

siderable portion of the energy liberated by cellular meta­

bolism is regularly dissipated in the form of locomotor 

activity (Wlngo and Browning, 1951)» Indeed, under certain 

conditions, rate of movement is a sensitive indicator of 

physiological state. Measurements of locomotor velocity, 

therefore, may be considered quantitative expressions of 

the reactions of living systems to the physical and chemical 

influences of the environment. Such data have obvious util­

ity to the physiologist. Their collection, however, has 

been rendered difficult by technical problems which remain 

unsolved even today. 

Various techniques have been developed over the years 

for determining the rate of locomotion of microorganisms. 

In general, they are of three types. These will be dis­

cussed categorically as direct methods, photographic methods 

and electronic methods. 

Direct methods are those in which an observer measures 

with a stop watch, clock,metronome or other timing device, 

the time required for a cell to traverse some known distance 

in the field of view. The distance traveled is ascertained 
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"by reference to marks inscribed on the tube or slide con­

taining the cells, by a millimeter scale placed alongside 

the trough in which the cells are moving, by a calibrated 

ocular micrometer scale whose image is superimposed on a 

microscopic field, or by other devices of similar nature. 

Swimming movements of the organisms may be restricted to 

paths more or less paralleling the axis of the distance-meas­

uring scale by passing a weak, direct electric current through 

the suspending fluid, or, taking advantage of the negative 

geotactic properties of some forms, by introducing them at 

the bottom of a vertically-oriented container and observing 

them as they swim to the top. Temperature control is ef­

fected by placing the observation vessel in an appropriate 

environment, usually a thermostatically-controlled water bath, 

or by providing the vessel itself with channels through which 

water of the desired temperature may be circulated (Lee and 

Klain, 1945). 

The stopwatch-micrometer method has serious shortcom­

ings (Ferguson, 1957, pp« 208-209), but it has been employed 

with reasonable success by a number of workers, including 

Nagai (1907) in a study of the effects of narcotics and salts 

on the Paramecium; Lohner and Markov!ts (1922) in a study of 

the oligodynamic effects of metal ions on the Paramecium; 

Glaser (1924) in a study of the effects of temperature on 

the Paramecium; Kamada (1928-31) in a study of the effects 
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of direct electric current on the Paramecium; Chase and G-laser 

(1930) in a study of the effects of pH changes on the Para­

mecium; Mills (1931) in a study of the effects of pH changes 

on Colpidlum: Moeller and VanDemark (1955) and Baker, Cragle, 

Salisbury and VanDemark (1957) In studies of the motility 

of bovine spermatozoa; and many others. 

The photographic method, as the designation implies, is 

an indirect observation technique in which the movements of 

cells are recorded on a photographic emulsion. Following 

development of the emulsion propriate measurements of 

velocity are made. Two r yral types of photographic record­

ing technique have be- ŝed. In the time exposure method 

a single photographic emulsion, or film frame, is exposed 

with intermittent or continuous illumination for a known 

period of time, during which the displacements of the cells 

in the photographic field are recorded on the emulsion as 

linear or sinusoidal traces. In the cinematographic method, 

a series of instantaneous exposures is made at some known 

constant rate by means of a motion picture camera, which, on 

each exposure, records the positions of the moving cells as 

points. By following the displacements of the points, frame-

by- frame, as the developed film is projected, the rates of 

locomotion of the cells represented by the points can be 

determined» The principal advantages offered by photographic 

methods are scope, scanning speed and objectivity. Instead 



www.manaraa.com

4 

of selecting and watching one cell at a time, as the human 

observer must, the emulsion of the photographic scanner 

watches and impartially records the movements of many or all 

of the cells in an experimental population simultaneously» 

By being able to furnish statistical information on the re­

sponses of entire populations as well as on all of the in­

dividuals in those populations, the photographic method is 

superior to any direct observation method. 

The first use of photography in determining the rate of 

locomotion of microorganisms appears to have been that of 

Gomandon (1917, 1919), who employed a time-lapse motion pic­

ture technique (one frame every six seconds) to study the 

chemotactie movements of phagocytes in parasitised blood. 

More recently, Schlenk and Kahmann (1939) and Rlkmenspoel 

(1957) have used standard-speed cinematographic methods in 

studies of the locomotion of the sperm cells of the trout 

and bull, respectively. 

The measurement of locomotor velocity from motion pic­

ture records is a tedious process, necessitating, in effect, 

a reprojection of the entire film record for each cell stud­

ied. The single-frame time exposure technique makes it pos­

sible to avoid this difficulty. Wense (1935), in a study of 

the effects of various neuropharmacological agents on the 

Paramecium, was apparently the first to make use of this 

type of photography. In his photographs, made with one-
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second time exposures and conventional photomicrographic il­

lumination, the traces generated by paramecia appear as dark, 

wavy lines against a brightly lighted microscopic field. 

Wense, however, neither measured the tracks nor attempted to 

estimate the locomotor velocities of the cells generating 

them. He was interested only in qualitative differences in 

response and evidently failed completely to recognize the po­

tentialities of his method. With light field illumination 

all parts of the photographic emulsion darken steadily as 

the exposure progresses. This tends to erase or obliterate 

the track images, since, under this type of illumination, they 

are merely shadows. The effect is somewhat like that pro­

duced by the evaporation of the conspicuous but ephemeral 

condensation trail of an aircraft. Subsequent workers have 

avoided this problem by employing dark field illumination. 

Under these conditions, no parts of the sensitive emulsion 

are affected by the exposure except those traversed by the 

point images of the brilliantly lighted cells. Consequently, 

lengthy time exposures can be made without obliterating 

tracks. The dark field photomicrographic method has been em­

ployed with varying degrees of success by several workers. 

Rothschild and Swann (1948) and Rothschild (1956) used It 

more or less incidentally in studies of the locomotion of 

sea-urchin spermatozoa. Wingo and Browning (1951), intro­

duced a retat? sector disk into the dark field illumination 
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system to obtain crude, but usable, stroboscoplc records 

from which the swimming speed of Tetrahvmena was determined. 

Harris (1953), using continuous dark field illumination, made 

time exposures ranging in duration from five to fifteen min­

utes, from which records he calculated the rate of locomotion 

of granulocytes in blood clots. The effect of X-irradiation 

on the swimming velocity of cillâtes was studied by Lengerova 

(1955) with the aid of dark field technique and one-second 

time exposures. A new type of recording system, employing 

macro-photographic apparatus and dark field illumination 

achieved through the use of polarizing filters, was described 

by Ferguson (1955, 1957) in connection with a study of the 

effects of temperature, pH, osmotic pressure and other in­

fluences on the rate of locomotion of paramecia. An improved 

version of this method and some of the results obtained with 

it are discussed in the following sections of this the si s. 

G-ebauer (1930) used dark field time-exposure photomicro­

graphy to study the galvanotactic behavior of Volvox. and 

Brokaw (1957, 1958) employed similar technique in investiga­

tions of the chemotactic and galvanotactic responses of 

bracken spermatozoids. However, inasmuch as locomotor veloc­

ity measurements were neither made nor sought in these stud­

ies, they will not be discussed further. 

Electronic methods for determining the rate of locomo­

tion of cells have great promise, but they are still very 
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much In the early experimental stages of development. In 

systems described by Rikmenspoel (1957) and by VanBemark# 

Salisbury and Moeller (1958), a light-sensitive electronic 

device (photoelectric cell or photomultiplier tube) is em­

ployed as the scanning element. The system is designed in 

such manner that the movements of cells past an orifice or 

through an observation volume result in variations in the 

amount of light reaching the scanning element, resulting in 

variations in the magnitude or frequency of its output. The 

electrical signals from this device can be displayed as 

curves or spikes on the screen of a cathode ray tube, which 

can be measured directly or photographically recorded, or 

processed in other ways to yield desired information on the 

mean rate of locomotion of the cells, the distribution of 

velocity in the population, and other statistics. Though 

costly and complex, electronic scanning systems of one kind 

or another are unquestionably destined to become important 

instruments of research in many biological laboratories. 

In the following pages, the author reports on the fur­

ther development and applications of a photographic method 

which, it is hoped, will prove amenable to electronic auto­

mation. As a technique for determining the rate of loco­

motion of microorganisms, the method is definitely superior 

to others of its kind which have been reported in the litera 

ture to date. It is a simple, versatile method of high pre­
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cision, accuracy and resolving power. Unfortunately, however, 

It Is an Inefficient method. While the photographic emulsion 

sees and faithfully records the movements of tens, hundreds 

or even thousands of cells simultaneously, each track so re­

corded must he laboriously measured, one by one. Human hands 

and human eyes constitute, as in all the earlier methods, a 

bottleneck. Fortunately, however, this particular bottleneck 

seems susceptible to attack. The solution visualized by 

the author is a combination scanning system in which an elec­

tronic device automatically counts and measures the tracks 

recorded on a film record, analyzes the data, and prints out 

or oscilloscoplcally displays the results. Details of this 

proposal will be discussed later. 

The research reported in the following pages was con­

ducted with the above ideas in mind. Its purpose was two­

fold: (1) to assess the applicability of the method to a 

wide variety of physiological problems; and (2) to obtain 

certain types of information on the locomotor velocity re­

sponse which the author considers indispensable to continued 

development and refinement of the technique. 
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II. APPARATUS 

Components of the photographic scanner and their posi­

tional relationships are shown in Figure 1. The basic ele­

ments of this apparatus, described in earlier publications 

(Ferguson, 1955, 1957), are (a) an observation chamber, 

(b) a temperature regulating tank, (c) a recording camera, 

and (d) lamps for illuminating the photographic field. Re­

cent additions to this setup, not previously described, in­

clude (a) an automatic control unit (not shown in Figure 1) 

and (b) an optical chronometer. 

The observation chamber (Figures 2 and 3;  see also, 

Ferguson, 1957, P* 213, for details of construction) is a 

vessel in which the cells are photographed. It is hung by 

its suspension arms in the water of the temperature regulat­

ing tank so that its front face, bearing two vertical 

rulings separated by a distance of 30mm, is visible to the 

recording camera through the rectangular window of the tank. 

The photographic field, intensely illuminated by 100-

watt Leitz microscope lamps, is caused to appear dark to 

the camera by rotating the polarizing filters in front of 

the lamps (Figure 5)» Cells In the chamber, however, stand 

out under these conditions as brilliant points of light. 
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The central portion of the photographic field is oc­

cupied by the space Image of a chronometer* Till s Instrument, 

a World War II Air Force hack watch with black face and 

white numerals and hands, is mounted face downward at the 

top of a reflex optical system (Figure 4) and is Illuminated 

from below by two small electric lamps. Light rays from the 

face of the watch are directed into the projecting lens of 

the system (Figure 5) by a 45° plane mirror (not shown)• 

The projecting lens forms an image of the watch face in the 

central plane of the observation chamber (Figure 6). The 

brightness of the image is balanced against that of the field 

by rotating a polarizing filter mounted inside the baffle 

plate attached to the back of the temperature regulating 

tank (Figure 1). With this arrangement, the watch face and 

the movements of the cells in the chamber are simultaneously 

registered In each scanning photograph. The records are 

thus marked as to sequence, time, and approximate duration 

of exposure. 

An automatic control unit was incorporated in the re­

cording setup to regulate certain operations incidental to 

scanning and to insure uniform reproduction of the exposure 

interval. The timer of this unit (Figures 8 and 10), con­

sisting of a synchronous electric motor, camshaft, cams, 

roller-type microswitches and relays (Figure 9), is based on 

a device described by Jones and Fields (1954). A circuit 
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diagram of the control system is presented in Figure 11, and 

the events of the control cycle are explained and summarized 

in Figure 10 and Table 1, respectively. As indicated in 

Table 2, the four-second exposure Interval, on which the ac­

curacy of the velocity determinations depends, is reproduced 

with considerable precision. 

An Argus 35mm slide projector with a special film strip 

carrier (Figure 7) was used in the examination of the photo­

graphic records. The construction of the carrier is briefly 

described in the figure caption. 
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Figure 1» Photographic recording apparatus. Components 
include, from left to right, (a) reflex optical system for 
projecting image of watch face into observation chamber; 
(b) field illuminators (paired l00-wat1; Leitz microscope 
lamps) with adjustable Polaroid attachments; (c) light 
baffle; (d) adjustable Polaroid attachment for varying 
brightness of watch face image while maintaining constant 
aperture in lens of projecting system; (e) temperature 
regulating tank and observation chamber (suspension arms 
of which are visible above the rectangular front window 
of the tank); (f) a camera unit, consisting of Polaroid 
attachment, Leitz bellows focusing device, containing 
Elmar 50 mm f3»5 lens, and Focaslide with 5X wide field 
focusing magnifier (Lelca IHf camera box, not shown here, 
is mounted on the Focaslide when recording cell movements); 
and (g) an optical bench, on which all of the components 
are mounted and held in proper positional relationship. 
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Figure 2. Observation chamber (assembled). Arms project­
ing from top of U-shaped frame suspend vessel in water of 
temperature regulating tank. Alignment arm at bottom main­
tains parallelism of chamber faces and film plane of record­
ing camera. Face of chamber shown here is that presented 
to the recording camera. Vertical white line visible in 
shadow to right of little finger of holder1s right hand is 
one of two rulings Inscribed on front glass of chamber to 
indicate scale of photographic reproduction. 

Figure 3» Observation chamber (partially disassembled). 
Components of chamber include milled frame, glass plates, 
neoprene gasket, pressure plate, suspension and alignment 
arms, and machine screws. Suspension and alignment arms, 
attached to opposite side of frame, are shown in Figure 2. 
All metal parts are of brass. 
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Figure 4. Watch and positioning mount 
at top of reflex optical system. Watch 
is placed face downward over hole in 
plate and is secured by metal bar 
(swung to right in this picture) slipped 
over vertical machine screws and tight­
ened by nuts. Face of watch is illumi­
nated by 7-watt lamps mounted to left 
and right of hole on underside of plate. 
An erect space image of the watch face 
is formed in the observât! 
when the watch is mounted 

Ion chamber 
with its 12 

mark towards the recording camera. 

Figure 6. Space image o 
in observation chamber, 
proximate duration of exp 
cated by sector swept out 
hand, are Integral parts 
record. Circular halatio 
positions, and lesser fla 

f watch face 
Time and ap-
3sure, indi-
by second 
of the track 
ns at 9 and 3 
res at 12 and 

6, are reflections of lamps from sur­
face of watch crystal. Sf 
points in field represent 
tides of débris suspende 
id of the observation cha 
ous lines are tracks of s 
moving in the photograph! 
Ing the exposure 

mall white 
minute par-

d in the flu­
mber. Slnu-
mall dilates 
c field dur-

Figure 5. Projection lens of reflex 
optical system. Lens is a 135mm f4.5 
anastigmat used at full aperture. For-
ty-five degree mirror mounted behind lens 
and below watch directs rays from illum­
inated watch face into projection lens. 
Lens focuses rays to form space image of 
the watch face in the central plane of 
the observation chamber. Paired 100-
watt Leitz microscope lamps to right and 
left of projection lens provide illumi­
nation for the photographic field. Po­
laroid attachments in front of lamps can 
be rotated to produce a dark field light­
ing effect. 

Figure 7. Projector used in reading 
track records. Housing of lamp has 
been removed to show details of film 
strip carrier attached to standard 
35mm slide projector. Carrier con­
sists of frame holding spring-loaded 
glass plates separated at edges by 
thin metal strips. Film strip in­
serted between glass plates and metal 
strips is held flat and in proper posi­
tion for projection. 
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Figure 8. Automatic timing unit. Driving motor (3 RPM 
synchronous, 60 cycles, 110 volts AO) is at right end. 
Torque developed by motor is transmitted to camshaft by 
sleeve linkage. Timing cams A (right), B (center) and C 
(left) actuate roller-type microswitches. 

Figure 9» Relays. Heavy duty relays in center, actuated 
by signals from microswitches, control 110-volt electrical 
apparatus operated in conjunction with recorder. Relays 
on extreme left and right are parts of other control sys­
tems and are not directly involved in operation of timing 
unit. 
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Figure 10. Automatic timing unit (diagram). 0am A is the system restoring cam. 
When roller contact of Microswitch A drops Into cut ab, power to the synchronous 
driving motor la Interrupted, stopping timing mechanism in a position of readi­
ness to receive next recycling instruction. Driving motor may be re-energized at 
will by momentarily closing manual starting switches S3 or 84 (Figure 11), which 
are connected in parallel with Microswitch A. Rotation of camshaft resulting 
from brief closure of either of these switches lifts roller contact of Mlcroswltch 
A out of the cut at point b, closing the electrical contacts of Mlcroswltch A. 
During remainder of cycle, operation of timing unit is automatic® The camshaft 
continues to turn until It has rotated 351°• As point a passes beneath the rol­
ler contact of Mlcroswltch A, the roller drops into the~~cut, opening Mlcroswltch 
A and terminating action of the driving motor. 

Gam B Is the appliance cam, regulating operation of all other electrical appara­
tus except the field illuminating lamps. From points a to o and from f to a, the 
roller contact of Mlcroswltch B Is in the raised position and the mlcroswltch Is 
closed. Through Relay 1 (Figure 11), power Is supplied to room lights, water 
bath agitator motor and other electrical apparatus operating between exposures. 
At point c,, as the roller contact drops into out of, these pieces of apparatus 
are turned off, eliminating vibration, extraneous light and other influences de­
trimental to the scanning operation. Ten seconds later, as the roller contact of 
Mlcroswltch B is lifted at point f, Mlcroswltch B closes and the appliances are 
turned back on. 

0am C is the exposure timing cam. Out de on this cam (arc of 72°) represents a 
time interval of four seconds. When roller contact of Mlcroswltch 0 drops Into 
the cut at point d, Relay 2 (Figure 11) is energized and the paired 100—watt 
lamps illuminating the photographic field are turned on, initiating the scanning 
exposure. At point <3, the roller contact lifts, turning the lamps off and termi­
nating the exposure. The focal plane shutter of the recording camera is opened 
manually a few seconds before the lights are turned on and is closed immediately 
after they are extinguished. 
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Table 1. Time-angle relationship of events In one record­
ing cycle of the automatic timing unit. Symbol­
ism: E, event (cam symbol); T, cumulative time 
in seconds; R, cumulative angular displacement of 
camshaft in degrees; I, interval (cam symbols); 
A, interval in degrees of arc; S, interval in 
seconds. Cam symbols referred to in E and I are 
lower case letters in cam diagrams, Figure 10. 

E T R I D S Description 

a 0.0 0 - - Manual starting switch 
closed; camshaft rotation 
begins. 

- - - a--b 9 0.5 — — —  

b 0.5 9 Mlcroswltch A closes; con­
trol shifts from manual to 
automatic. 

—  - - b--c 72 4.0 Manual starting switch 
opened. 

c 4.5 81 • Mlcroswltch B closes; room 
lights turned off, other 
apparatus stopped. 

- - - c--a 72 4.0 Shutter of recording camera 
opened manually. 

d 8.5 153 Mlcroswltch C closes; field 
illuminating lamps turned on; 
scanning exposure begins. 

— - - d--e 72 4.0 Scanning exposure Interval. 

e 12.5 225 Mlcroswltch C opens; field 
illuminating lamps turned 
off; scanning exposure ends. 

— — — e--f 36 2.0 Shutter of recording camera 
closed manually. 

f 14.5 261 Mlcroswltch B closes; room 
lights turned on; operation 
of other apparatus resumed. 

- - - f-•a 99 5.5 — — — 

a 20.0 360 Microswitch A opens; cam­
shaft rotation ceases, 
leaving system in a con­
dition of readiness to 
execute next recycling in­
struction. 
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Table 2. Duration and reproducibility of scanning expo­
sures regulated by automatic timing unit 
(measurements by electronic decade scaler). 

Timing Duration of exposure Deviation 
test in seconds from mean 

1 3,931 0.024 

2 3.972 0.017 

3 3.979 0.024 

4 3.934 0.021 

5 3.978 0.023 

6 3.969 0.014 

7 3.933 0.022 

8 3.977 0.022 

9 3.936 0.019 

10 3.964 0.009 

11 3.968 0.013 

12 3.938 0.017 

13 3.966 0.011 

14 3.930 0.025 

15 3.957 0.002 

Totals 59.332 O.263 

Means 3*955 0.018 

Average deviation of exposure intervals = 

0.018/3.955 x 100 = 0.5% 
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Figure 11. Control unit (circuit diagram). Electrical 
components labeled "timing mechanism" and "control panel" 
are actually parts of the same structural unit. Remote 
starter, S3, is a momentary switch on an extension cord 
which Is connected in parallel with manual starting switch 
S4 on the control panel and Mlcroswltch A of the timing 
mechanism. Switch 35, a toggle connected in parallel with 
Microswitch B, provides manual control of Relay 1 and, 
hence, of room lights and other electrical apparatus* 
Switches S6 and S? are manually operated toggles control­
ling right and left field illuminating lamps. Switch S8, 
a tumbler, is the main power switch for the unit# Lamps 
LI and L2 are Jeweled panel lamps signaling, when lighted, 
"timer operating" and "power on," respectively. 
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III. PROCEDURES 

Except for the sequencing of scanning exposures, all 

experiments were performed in exactly the same manner. The 

routine was as follows; (l) the temperature of the water 

bath in the temperature regulating tank was adjusted to the 

desired value ; (2) a l6~milllliter volume of a solution to 

be tested (distilled water in the case of the controls) was 

introduced Into the observation chamber by means of a cali­

brated glass hypodermic syringe from which the metal needle 

had been taken; (3) the chamber was placed in the water bath 

and allowed four minutes to attain temperature equilibrium 

with its surroundings; (4) the temperature of the water bath 

was noted and recorded; (5) at the end of the four-minute 

equilibration period, one milliliter of culture fluid, con­

taining from 200 to 400 paramecia, was forcibly injected 

into the solution in the observation chamber by means of a 

glass hypodermic syringe; (6) the chamber contents were im­

mediately mixed by passing a disposable wooden stirring rod 

from one side of the chamber to the other four times; (?) 

exactly 20 seconds after introduction of the cells, an auto­

matic control cycle was initiated by closure of the remote 

starting switch (S3, Figure 11), resulting in the series of 
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events outlined in Table 1; (8) at the end of the recording 

cycle, the water bath temperature was again noted and, if 

different from the previous value, recorded; (9) the chamber 

was removed from the water bath, emptied, thoroughly rinsed 

twice with distilled water and inverted on a special rack to 

drain; (10) the film in the recording camera was advanced, 

cocking the shutter. 

The sequence of scanning exposures was varied from time 

to time in an attempt to ascertain optimum spacing and the 

minimal number of exposures needed to establish the form of 

the response curve. In every case, the initial exposure was 

begun one-half minute (actually 28.5 seconds) after intro­

duction of the cells. Subsequent exposures were made at in­

tervals of one-half minute, one minute, two minutes or longer 

periods of time, depending on the duration and nature of the 

experiment. The time sequence of exposures in a given ex­

periment is indicated in the table summarizing its results. 

Tracks were recorded with a camera lens aperture of 

f5®6 on Kodak Plus-X film (ASA tungsten rating of 64), which 

was developed in Panthermic 777 developer (manufactured by 

Sussex Chemical Corporation, Newton, New Jersey) kept at 

constant working strength by regular replenishment. The 

films were deliberately underdeveloped to produce negatives 

with minimal background darkening in which the tracks were 

sharply defined as black lines. To minimize emulsion 
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scratching in subsequent handling operations, the films were 

run through a chrome-alum hardening bath (Morgan, 1953» P» 77) 

prior to fixation. 

Track records were examined by projecting the films on 

a ground-glass viewing screen with the slide projector shown 

in Figure 7» The distance between the screen and the projec­

tor was adjusted to provide an object-to-image enlargement 

ratio of one to ten. This adjustment was checked as the ini­

tial step in the examination of each negative by measuring 

on the viewing screen the distance between the images of the 

two vertical rulings inscribed on the front glass of the ob­

servation chamber (see Figure 2 and Ferguson, 1957, P* 213). 

The actual separation of the marks is 30 millimeters; in a 

10X enlargement, the separation of their images is 300 milli­

meters. 

In an earlier investigation (Ferguson, 1955, p. 90), 

greater variability in length was noted among tracks oriented 

more or less vertically than among those which were horizon­

tal. In the present study, therefore, only those tracks were 

selected for measurement whose angle with the horizontal did 

not exceed 30°. Track length, as the term is used here, re­

fers to a straight line distance from one end of a track to 

the other, rather than to distance along the sinusoidal 

curve itself. 

Animals used in the experiments were identified with 
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the aid of a key by Wenrich (1928) as Paramecium caudaturn. 

Clones were established by isolating the descendants of a 

single animal in separate, loosely-capped Mason jars con­

taining bacterized lettuce infusion. Thriving populations 

were maintained at room temperature, which averaged around 

26°C, by replenishing the cultures every 10 to 12 days. Re­

plenishment consisted of discarding about one third of the 

fluid in each culture, adding several fragments of dried 

lettuce (Sonneborn1s Dried Lettuce Medium, distributed by 

Difco Laboratories, Detroit, Michigan), and making up to 

the original volume with distilled water. The cultures were 

bacterized in the initial isolation by exposing freshly pre­

pared lettuce Infusion to the laboratory atmosphere about 48 

hours before introduction of the paramecia. All cultures 

were regularly checked thereafter for protozoan contaminants. 

The few in which species other than P. caudatum developed 

were discarded. In performing experiments, animals were 

taken only from actively growing cultures which had been re­

plenished within the preceding five to nine days» 
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IV, EXPERIMENTAL DATA 

Experiments were performed to determine the relation­

ship between rate of locomotion and the temperature, osmotic 

pressure and pH of the environment, and to assess the effects 

on rate of locomotion of several chemical agents, including 

vertebrate neurohormones (acetylcholine and adrenaline), a 

respiratory poison (sodium cyanide) and several anesthetics 

(urethane and an homologous series of alcohols). 

The results of the experiments have been tabulated and 

are displayed graphically in figures. Curves in the figures 

have been fitted to point distributions by approximation 

methods. A guide to the experimental data is found in Table 

3» Significant figures and probable errors of measurement 

are evaluated in Table 4, and symbols used as column head­

ings in the velocity tables are explained in Table 5» 

In all tables and figures in this section, rates of 

locomotion of cells are expressed in terms of the mean 

length, in millimeters, of the projected images of the 

tracks. Since the enlargement factor is ten and the expo­

sure time four seconds, the mean velocity of the cells, in 
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millimeters per second, is equal to 1/40 the number express­

ing mean track length. 

Concentrations of chemicals indicated in the tables and 

figures are those of test solutions prior to the introduction 

of the cells. As a consequence of mixing culture fluid and 

test solution in the volume ratio 1:16, cells were actually 

exposed to concentrations of the tested reagents which were 

16/17, or about 94$, of the values specified. Except in the 

case of the buffer solutions (Table 10) used in the study of 

pH effects, each of the test solutions contained only a sin­

gle solute dissolved in distilled water* 

Table 3* Guide to experimental data. 

Experiment Page 

A. Temperature 

Velocity versus time at several temperatures: 
Table 6 40 
Figure 12 37 

Velocity versus temperature at several times: 
Table 7 42 
Figure 13 39 

B. Osmotic Pressure 

Velocity versus time at several pressures: 
Table 8 51 
Figuré 14 48 
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Table 3» (Continued). 

Experiment Page 

Velocity versus pressure at several times: 
Table 53 
Figure 15 50 

C. pH 

Velocity versus time at several pHs: 
Table 11 64 
Figure 16 60 

Velocity versus pH at several times: 
Table 11 64 
Figure 1? 62 

D. Neurohormones 

Acetylcholine 
Table 12 74 
Figure 18 (A-C) 73 

Adrenaline 
Table 13 76 
Figure 18 (D-F) 73 

E. Sodium Cyanide 

Table 14 80 
Figure 19 • • • * 79 

F. Anesthetics 

Urethane (ethyl carbamate) 
Table 15 86 
Figure 20 (A-C) . 85 

Alcohols 
Table 16 88 
Figure zO (u-F) 85 
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Table 4. Probable errors and significant figures. 

Probable errors 
Absolute Relative 

Values considered 
significant to 

Measurements 
Weight 
Volume 
Temperature 
PH 
Length of pro­
jected track 
image 

Time intervals 
Scanning expo­
sure 

Sequence of 
scanning ex­
posures 
(variable) 

Calculations 
Operations on 
lO" slide rule 

50mg/10 grams 
Ice/lOOcc 

0.3*0 
0.05 pH unit 

0.5 mm 

1/1000 

0.5$ 
1.0# 

0.02sec/4sec 0.5; 

lsec/interval 

1.0 degree 
0.1 pH unit 
1.0 millimeter 

0.02 second 

0.02 minute 

0.1$ 3rd digit £ 1 

Table 5» Special symbols employed in tables. Except where 
otherwise indicated, table symbols have the fol­
lowing meanings. 

Symbol Meaning 

N 

S 

T 

V 

Number of tracks measured (or counted) on a 
given scanning photograph. 

Sum of lengths (millimeters) of N tracks 
(projection enlargement ratio 10:1) measured 
on a given scanning photograph. 

Cumulative time (minutes) of exposure of 
cells to a given experimental situation. 

Velocity (millimeters per second) times 40. 
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V. DISCUSSION OF RESULTS 

A. Temperature 

Curves in Figures 12 and 13 show the relationship be­

tween temperature and rate of locomotion. In Figure 12, 

rate of locomotion is plotted as a function of time at sev­

eral temperatures, while in Figure 13 it is plotted as a 

function of temperature at several times of exposure. The 

data in Table 7 are those plotted in Figure 13; they were 

obtained from the curves of Figure 12. 

Responses of the cells in the physiological temperature 

range are shown in curves A through F of Figure 12. Curves 

A (5°C-7°C) through E (25.5°C) are essentially straight lines 

paralleling the time axis; in the temperature range indicated, 

and within the period of observation specified, rate of loco­

motion appears to bear no relationship to time of exposure. 

Curve F' (30.5°C), representing response near the upper limit 

of the physiological range, shows stimulation and a transi­

tion to a depressed state of activity. Curves G and H are 

those of response at temperatures beyond the tolerable range. 

In G (35«8°C), a brief period of heightened activity is fol­

lowed by one in which there is a steady decline to death. 

In H (40.0°C), inactivation and death occur almost at once. 

The tail on the right end of the curve in G and H is an arti= 
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fact due to convectional displacements of dead cells and does 

not actually represent locomotor activity. 

The time-temperature-velocity data represented in Figure 

13 are the same as those of Figure 12, but the curves of the 

two figures are strikingly different. The curves of Figure 

13 are of interest for several reasons: (1) they have the 

same form; (2) they consist largely of two straight line 

segments, one of which has positive slope, the other nega­

tive slope; (3) corresponding segments of the curves, though 

differing somewhat in length, especially in the upper tem­

perature range, all have essentially the same slope; (4) the 

10°C-25°0 portions of curves G (3 minutes) through H (10 min­

utes) are superimposable; (5) the curves in E (5 minutes) 

through H (10 minutes) are completely superImposable; (6) 

the only outstanding difference in the entire series of 

curves Is a downward and leftward movement of the inflection 

point (peak), which occurs from A (1 minute) through D (4 min­

utes); (7) from E (5 minutes) through H (10 minutes) the in­

flection point remains relatively fixed in position, its in­

coordinate being a temperature corresponding with that of 

the normal environment of the cells, viz.. about 26°C (see 

page 29). 

At least four generalizations concerning temperature 

and rate of locomotion can be made from the curves in Fig­

ures 12 and 13. First (illustrated by Figure 12, P), in 
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Figure 12. Effect of temperature on rate of locomotion 
(velocity versus time at several temperature levels). Val­
ues on Y-axes are mean rates of locomotion (X40) in milli­
meters per second; values on Y-axes are minutes of exposure 
of cells to temperature indicated. Temperatures are as 
follows: A, 5°C-7°C; B, 10.0°C-10.5 C; C, 15*0°C; D, 20.0°C; 
E, 25-5°0; P, 30.5°C; G, 35*8°C; H, 40.0°C. Tail on right 
end of curves in G and H is an artifact produced by con­
vectional displacement of dead cells in the observation 
medium* 
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Figure 13. Effect of temperature on rate of locomotion 
(velocity versus temperature at several time intervals). 
Values on Y-axes, read from curves in Figure 12, are mean 
rates of locomotion (X40) in millimeters per second; values 
on X-axes indicate temperature In degrees Centigrade. Time 
Intervals are as follows; A, 1 minute; B, 2 minutes; C, 
3 minutes; D, k minutes; E, 5 minutes; F, 6 minutes; C-, 
8 minutes; H, 10 minutes. 



www.manaraa.com

39 

120-120-

100-100-

80-80-

60-60-

40-40-

20-20-

120 

100-

80-

60-

40-

20-

120 

100-

80-

60-

40-

20-

0 T 

120 

100-

80-

60-

40-

20-

120 

100-

80-

60-

40" 

20-

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 

lOO-

SO-

60-

40-

20-

100-

80-

60-

40-

20-



www.manaraa.com

40 

Table 6, Effect of temperature on rate of locomotion. 

5*0°C-7«0°C 10# 0°0-10.5°C 

T N S V T N S V 

0.5 19 800 42.1 0.5 26 689 26.5 
1.0 40 1542 38.6 1.0 64 2091 32.7 
1.5 47 1418 30.2 1.5 57 1842 32.3 
2.0 51 1608 31,5 2.0 54 1750 32.4 
2.5 47 1380 29.4 2.5 51 1670 32.8 
3.0 46 1365 29.7 3.0 50 1691 33.8 
3,5 51 1555 30.5 3-5 52 1747 33.6 
4.0 48 1352 28.2 4.0 53 1638 30.9 
4.5 45 1345 29.9 4.5 52 1819 35.0 
5.0 51 1622 31.8 5.0 50 1874 37.5 
6.0 54 1702 31.5 5.5 39 1620 41.5 
7.0 57 1713 30.1 6.5 39 1673 42.9 
8.0 57 1769 31.0 7.5 37 166? 45.1 
9.0 56 1767 31.6 8.5 39 1741 44.7 
10.0 55 1739 31.6 9.5 33 1433 43.5 

15.0°C 

T N S V 

0.5 13 720 55.3 
1.0 23 1127 49.0 
1.5 27 1363 50.5 
2.0 40 2079 52.0 
2.5 44 2462 56.0 
3.0 36 2197 61.1 
3.5 40 2380 59,6 
4.0 34 2104 61,9 
4.5 45 2722 60.5 
5.0 42 2492 59.3 
6.0 43 2664 61.9 
7.0 43 2714 63.1 
8.0 41 2638 64.3 
9.0 42 2695 64.2 
10.0 44 2874 65.3 

20.0°C 

T N S V 

0,5 14 971 69.3 
1.0 26 1951 75,0 
1.5 40 3100 77.5 
2.0 44 3362 76.4 
2.5 45 3556 79.0 
3.0 44 3439 78.2 
3.5 46 3715 80.8 
4.0 47 3720 79.2 
4.5 38 3U7 82.0 
5.0 41 3327 81.2 
6.0 41 3406 83.1 
7.0 48 4007 83.6 
8.0 41 3519 85.8 
9.0 44 3784 86.0 

10a 0 47 4027 85.7 
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Table 7. Relationship between rate of locomotion and tem­
perature at various times of exposure (data from 
curves in Figure 12). 

Time of exposure of cells in minutes 

Temperature 1.0 2.0 3.0 4.0 5*0 6.0 8.0 10.0 

5.0°C-7.0°C 37 31 31 31 31 32 32 33 

10.0°C-10.5°C 32 33 33 34 38 43 44 44 

15.0°0 50 52 59 61 62 63 63 65 

20.0°C 73 78 79 81 82 83 86 87 

25.5°C 95 99 101 102 102 102 102 99 

30.5°C 117 123 114 84 60 48 38 35 

35.8°C 126 70 21 

40 • 0 0 16 «ecs «=»<= • Mo* m — 
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the supra-optimal but tolerable temperature range the rate-

time curve of response has the form of a reversed sigmoid 

whose major features, in chronological order, are (1) a 

shoulder, representing excitation and briefly-sustained 

hyper-normal activity; (2) a diagonal of negative slope, re­

presenting the transition from a state of abnormally high 

activity to one of abnormally low activity; and (3) a toe, 

representing completion of adjustment and attainment of a 

steady state characterized by depressed but continuing acti­

vity. 

Second (illustrated by Figure 12, F-H), the rate-time 

sigmoid of response in the range above optimal becomes pro­

gressively compressed to the left and its toe progressively 

lowered as conditions approach the upper limits of tolera­

tion. 

Third (illustrated by Figure 13), within the first ten 

minutes of exposure, rate is directly proportional to tem­

perature in the range 5°C to 25°C. 

Fourth (illustrated by Figure 13), within the first ten 

minutes of exposure, response is maximal at a temperature 

equal to or slightly above that of the normal environment. 

In an earlier study of the relationship between temper­

ature and rate of locomotion (Ferguson, 1955, PP* 61-64; 

1957, P» 213 Figure 16), a population of Paramecium aurella 
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was exposed to a temperature gradient of 0.4°C per minute 

from 9«0°C to 36.?°C« Under these conditions, the rate-

temperature curve in the 10°C to 30°0 range consisted of two 

straight line segments, that In the 19° C to 28°C range hav­

ing a slope more than twice that of the segment in the 8°C 

to 19°C range. The temperature corresponding with the in­

flection in this two-segment curve, viz.. 19°C, was that of 

the normal environment of the experimental animals. 

Other studies of the relationship between temperature 

and the rate of processes in the Paramecium include those of 

Jacobs (1919) on thermal death; Cole (1925) on pulsation of 

the contractile vacuole; Mitchell (1929) on division rate; 

Caw (1936) on pulsation of the contractile vacuole: Lee 

(1942a) on the formation of food vacuoles; Pace and Kimura. 

(1944) on respiration, and many others. The only study of 

the relationship between temperature and rate of locomotion, 

however, appears to have been that of G-laser (1924). 

Linear relationships between temperature and rate, re­

sembling that depicted In Figure 13, are evident in the data 

reported by Glaser (1924), Lee (1942a) and Cole (1925)« Ex­

amples of such relationships in organisms other than the 

Paramecium are cited by Belehradek (1935, PP» 9-10). 

The data on respiratory metabolism presented by Pace 

and Kimura (1944) indicate that the Paramecium utilizes car­

bohydrates almost exclusively at temperatures near the upper 
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limit of its physiological range. The respiratory quotient 

for Paramecium caudatum at 35°C is said by these authors to 

be 0.99, a s opposed to 0.75 at 25°C. 

Comprehensive surveys of the relationship between tem­

perature and biological processes in many different types of 

organisms are found in Belehradek (1935); Precht, Christo-

phersen and Hensel (1955), who include an entire chapter on 

microorganisms; and Johnson (1957)• 

B. Osmotic Pressure 

Curves in Figures 14 and 15 show the relationship be­

tween osmotic pressure and rate of locomotion. In Figure 14, 

rate of locomotion is plotted as a function of time at sev­

eral sucrose concentrations, while in Figure 15 it is plotted 

as a function of the concentration at several times of ex­

posure. The data in Table 9 are those plotted in Figure 15; 

they were obtained from the curves of Figure 14. Osmotic 

pressures corresponding with the various concentrations of 

sucrose can be calculated by means of the van't Hoff rela­

tion, P = iCHT, in which P is the pressure in atmospheres, 

i the isotonic coefficient (which has a value of 1 for sucrose 

and other non-electrolytes), C the molar concentration of 

sucrose, R the universal gas constant (0.082 liter atmos-

pheres/degree/mol) and T the absolute temperature (degrees 

Kelvin). In the tables and figures, however, the osmotic 
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pressures have been expressed only indirectly as sucrose 

concentrations. 

With regard to colligative properties, the Paramecium 

is said by Frisch (1937, P» 159) to have "...within limits, 

a control over its environment." It is apparently not a 

homoiosmotic animal (Kamada, 1935-38, p. 6l), but certain 

homeostatic mechanisms do appear to function in this organ­

ism. Curves E through G- of Figure 14 reveal the existence 

of such a mechanism and, at the same time, demonstrate its 

failure. The locomotor steady state of the paramecia used 

in this experiment seems to be that associated with the 

Y = 50 level of activity; the time during which this state 

can be maintained in a concentrated solution appears to be 

inversely related to the concentration of the solution. 

The duration of the steady state (measured from time zero to 

the point of abrupt downward deflection of the rate-time 

curve) is six, four and three minutes, respectively, in 

curves E (0.20 M), F (0.25 M) and G- (0.30 M) of Figure 14. 

In this restricted range, the time required for failure of 

the homeostatic mechanism is roughly proportional to the re­

ciprocal of the concentration. In curve H (0.35 M) and sub­

sequent curves in Figure 14, a steady state is apparently 

never attained. Results similar to those shown by curves 

E through G- were obtained in earlier experiments with Para­

mecium aurelia (see Ferguson, 1957, P» 214, Figure 18). 
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Figure 14. Effect of osmotic pressure on rate of locomo­
tion (velocity versus time at several osmotic pressures). 
Values on X-axes are mean rates of locomotion (X40) in 
millimeters per second; values on X-axes are minutes of ex­
posure of cells to solution indicated. Control curve is 
in A. Sucrose concentrations are as follows: B, 0.05 M; 
C, 0.10 M; D, 0.15 M; E, 0.20 M; F, 0.25 M; &, 0.]0 M; H, 
0.35 M; I, 0.40 M; J, 0.45 M; K, 0.50 H. 
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.Figure 15. Effect of osmotic pressure on rate of locomotion 
(velocity versus sucrose concentration at several time in­
tervals) • Values on Y-axes are mean rates of locomotion 
(X4o) in millimeters per second; values on X-axes indicate 
concentration of sucrose solutions in moles. Time intervals 
are as follows: A, 1 minute; B, 2 minutes; C, 3 minutes; 
D, 4 minutes; E, 5 minutes; F, 6 minutes; G-, 7 minutes; 
H, 8 minutes. 
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Table 8. Effect of osmotic pressure on rate of locomotion 
(sucrose solutions)» 

Control (27.3°C-27.0°C) 0.05M (27»0°C-26.8°C) 

T N S V T N S 

0.5 0.5 4 199 
1.0 5 248 49.6 1.0 10 515 
1.5 12 666 55.5 1.5 22 1427 
2.0 14 828 59.2 2.0 33 2148 
2.5 23 1319 57.3 2.5 38 2615 
3.0 18 1189 66.0 3.0 39 2355 
3.5 25 1598 63.9 3.5 38 2552 
4.0 31 1987 64.1 4.0 40 2724 
4.5 31 2031 65.5 4.5 50 3280 
5.0 31 1928 62.2 5.0 44 2892 
5.5 31 1938 62.5 5.5 43 2756 
6.5 23 1414 61.5 6.0 40 2401 
7.5 24 1426 59,4 7.0 44 2536 
8.5 30 1674 55.8 
9.5 17 1002 58,9 
10.5 21 1391 66.3 

49.8 
51.5 
64.9 
65.1 
68.9 
60.4 
67.2 
68.2 
65.6 
65.8 
64.1 
60.0 
57.7 

0.15M (26.5°C) 0.10M (26.5°C-26.7°0) 

T N S V T N S V 

0.5 9 221 24.6 0.5 
1.0 18 691 38.4 1.0 13 6l4 47.2 
1.5 23 1030 44.8 1.5 21 1043 49.7 
2.0 25 1178 47.1 2.0 31 1612 52.0 
2.5 29 1316 45.4 2.5 29 1500 51.8 
3.0 30 1429 47.6 3-0 25 1339 53.6 
3.5 36 1670 46.4 3.5 45 2514 55.9 
4.0 35 1637 46.7 4.0 42 2368 56.4 
4.5 4o 1816 45.4 4.5 41 2263 55.2 
5.0 38 1756 46.5 5.0 43 2348 54.6 
5.5 32 1311 41.0 5.5 46 2311 50.2 
6.0 33 1450 43.9 6.0 46 2265 49.3 
7.0 31 1296 41.8 7.0 — 

49.3 

8.0 34 1356 39.9 8.0 40 1938 48.5 
9.0 20 790 39.5 9.0 40 1985 49.6 
10.0 8 267 33.4 10.0 — — — 
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Table 8. (Continued). 

0.20M (26.4°C-26.5°C) 0.25% (26.0°C-26.3°C) 

T N S V T N S V 

0.5 3 149 49.7 0.5 5 294 58.8 
1.0 9 445 49.5 1.0 15 800 53.3 
1.5 19 975 51.3 1-5 18 780 43.3 
2.0 19 1070 56.3 2.0 23 1079 46.9 
2.5 36 1813 50.4 2.5 22 1004 45.7 
3.0 32 I606 50.2 3.0 28 1204 43.1 
3.5 39 1974 50.7 3.5 26 1018 39.2 
4.0 34 1765 51.9 4.0 14 554 38.8 
4.5 31 1712 55.3 4.5 3 66 22.0 
5.0 24 1235 51.5 
5.5 19 935 49.2 
6.0 4 117 29.3 

0.35% (26.0 C) 

T N S V 
0.30M (26.0°0) 

0.5 7 399 57.0 
T N S V 1.0 37 1948 52.7 

1.5 36 1700 47» 2 
0.5 4 237 59.2 2.0 21 892 42.5 
1.0 25 1260 50.4 2.5 8 205 25.6 
1.5 29 1476 50.8 
2.0 37 1823 49.3 
2.5 23 1156 50.3 

(26.0°C) 3.0 ? 220 31.4 0.45M (26.0°C) 
3.5 1 29 29.0 

T N S V 

0.5 9 476 52.9 
1.0 25 1073 43.0 
1.5 20 647 32.3 
2.0 3 64 21.3 

0.40M (26.0 C) 
21.3 

T H S V 

36.6 
0.50M (25.8°0-26.O°C) 

0.5 5 183 36.6 
1.0 22 1031 46.9 T N S V 
1.5 30 1081 36.1 
2.0 14 322 23.0 0.5 7 232 33.1 
2.5 8 54 6.7 1.0 14 351 25.1 
3.0 — 1.5 15 290 19.3 
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Table 9. Relationship between rate of locomotion and os­
motic pressure at various times of exposure 
(data from curves in Figure 15)• 

Molar Time of exposure in minutes 
concentration 

of 
sucrose 1.0 2,0 3*0 4.0 5*0 6.0 7*0 8.0 

0.00 50 60 63 65 64 63 61 58 

0.05 56 66 68 68 66 62 58 53 

0.10 47 52 54 56 54 49 48 48 

0.15 38 47 48 4? 46 45 43 40 

0.20 50 50 50 51 53 30 — — 

0.25 50 46 44 37 9 — — — 

0.30 51 49 43 5 — — — — 

0.35 53 43 6 — — — — — 

0,40 48 25 

0.45 44 22 

0.50 26 12 — — —— — — — 
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The curves in Figure 15 are bimodal with a pronounced 

and characteristic minimum at the 0.12 M coordinate. Below 

this value, the curves are remarkably alike; in fact, in the 

0.00 M-0.12 M range, curves B (2 minutes) through E (5 min­

utes) are superimposable. In the concentration range above 

0.12 M, however, the curves become progressively compressed 

towards the left as time of exposure increases. Finally, in 

F (6 minutes) through H (8 minutes), this portion of the 

curve disappears. A minimum similar to that displayed by 

the curves in Figure 15 was observed by the author at a 

slightly lower concentration, viz., 0.08 M-0.10 M, in the 

study of Paramecium aurelia cited above. Because the data 

taken in this experiment were relatively incomplete, the 

minimum was dismissed at that time as an artifact or error 

(see footnote at bottom of Table 11, p. 67, in Ferguson, 

1955). 

Several conclusions may be drawn from Figures 14 and 15. 

First, the cells are stimulated by abrupt exposure to an en­

vironment differing in physical and chemical properties, in­

cluding colligative, from that to which the cells have be­

come accustomed. 

Second, within limits, the magnitude of excitation and 

the persistence of the state of excitation produced by such 

exposure are related to the magnitude, and probably also the 

character, of the difference between the environments» 
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Third, the physical, if not the chemical, conditions 

in a 0.12 M sucrose solution must approximate those of the 

normal environment of the cells, since minimal excitation 

(lowest rate of locomotion) was consistently associated with 

this concentration» 

Fourth, the cells possess homeostatic mechanisms which 

tend to resist the changes associated with excitation and 

which, in the absence of excitation, and under a specified 

set of conditions, maintains the cells in a steady state of 

locomotor activity. 

Fifth, these homeostatic mechanisms have the capacity 

to handle any demands placed upon them in solutions whose 

concentrations do not exceed 0.12 M. 

Sixth, at concentrations in excess of 0.12 M, the me­

chanisms are inadequate, falling at a rate which depends upon 

the concentration to which the cells are exposed. 

In the concentration range 0.00 M through 0.12 M, the 

cell is exposed to a hypotonic medium, in which the problem 

is that of flooding. Contractile vacuoles and other provi­

sions enable the cell to solve this problem. In solutions 

having concentrations in excess of 0*12 M, on the other 

hand, the problem is one of desiccation. The cell is not 

immediately able to cope with this situation. Thus water is 

rapidly withdrawn from the cells, impeding the metabolic pro­

cesses which provide the cilia with energy. Locomotor 
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activity declines at a rate which appears to depend on the 

magnitude of the osmotic differential 'between the cell and 

its surroundings. 

Apparently no quantitative studies of the relationship 

between osmotic pressure and rate of locomotion of the Para­

mecium, other than that cited above, have been made, although 

much Is published on the relationship between osmotic pres­

sure and the functioning of the contractile vacuole. Kamada 

(1935-38) found that the rate of contraction of the vacuole 

in paramecia which were transferred to concentrated solutions 

first dropped, then rose, to level off at a rate which was 

not related to concentration. He interpreted this to mean 

that the cells somehow are able to maintain, after a suitable 

period of time, a constant osmotic pressure differential be­

tween their own protoplasm and that of the environment. Saw 

(1936), observing the rate of vacuolar pulsation in animals 

exposed for two hours to solutions ranging in concentration 

up to 0.10 M, found that the equilibrium rate in these dilute 

solutions was related to concentration. Studies by Frisch 

(1937) indicate that the pellicle of the Paramecium is im­

permeable to water and that the rate of contractile vacuole 

pulsation depends, not on the external osmotic pressure, di­

rectly, but rather on the rate at which food vacuoles are 

formed. He believes that end-osmosis does not occur and that 

water expelled by the contractile vacuole enters the cell 
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only through the cytostome. That the rate of water Influx 

can be regulated to an extent is indicated by his observa­

tion that vacuolar pulsation ceased for periods as long as 

five minutes in animals which were swimming actively. In 

an investigation of the relationship between osmotic pres­

sure and the processes of respiration and growth in Astasia, 

von Dach (1950) found that concentrated solutions inhibited 

growth much more than they did respiration. In nutrient 

solutions having a freezing point depression of 0.4°0, both 

processes were inhibited only slightly. Growth was com­

pletely inhibited in those with a depression of 1.0°0, while 

respiration was still 15$ of normal in those with a depres­

sion of 1.5°C. In those with a depression of 2.0°C, however, 

the cells were quickly killed. 

C. Hydrogen Ion Concentration 

Curves in Figures 16 and 17 show the relationship be­

tween pH and rate of locomotion. In Figure 16, rate of 

locomotion is plotted as a function of time at selected pH 

levels, while in Figure 17 it is plotted as a function of pH 

at several times of exposure. Both figures were drawn from 

the data in Table 11. 

Buffers used in this experiment were based on Clark 

(1928). The composition of the buffer solutions, and the pH 

of 1:100 dilutions of these solutions before and after the 
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addition of culture fluid are indicated in Table 10. As in 

the preceding experiments, culture fluid and buffer dilutions 

were mixed in the volume ratio 1:16; it will be noted In 

Table 10 that mixing caused the pH of the buffer solutions 

to shift slightly towards that of the culture fluid, which 

was 7*50» The pH change was greatest at extremities of the 

range (for example, the shift from 9.80 to 9*67) and was, of 

course, zero in the case of the buffer whose pH already ap­

proximated that of the added fluid. The buffer solutions 

were used in high dilution to minimize osmotic pressure ef­

fects. 

Living organisms apparently react to all types of ions» 

They react differently to different ions; they react to 

changes in the concentration of specific ions; and they even 

react to alterations in the proportions of different ionic 

species. Therefore, in any study of the relationship between 

pH and a biological process, the responses of organisms in 

buffered solutions must be interpreted conservatively. The 

curves of Figures 16 and 17 depict the reactions of cells in 

complex environments which obviously contain ions other than 

those of hydrogen. The effects shown, however, are believed 

to be mainly those attributable to the influence of the hy­

drogen ion. 

The six curves shown in Figure 16 have been selected be­

cause they typify the responses of the cells in various 
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Figure 16. Effect of pH on rate of locomotion (velocity 
versus time at several H-ion concentrations)» Values on 
Y-axes are mean rates of locomotion (X40) in millimeters 
per second; values on X-axes are minutes of exposure of 
cells to solutions. The pH of each buffer solution was 
determined electrometrically after introduction of cells; 
values were as follows: A, 7.20; B, 8.10; 0, 8.17; D, 8*53; 
E, 9.15; F, 9*6?. Buffers in A, B, 0 were prepared from 
M/10 citric acid and M/5 dlsodium phosphate; those in D, E, 
F were prepared from M/5 boric acid and M/5 sodium hydrox­
ide. Dilutions of 1:100 were used to obviate osmotic pres­
sure effects» 
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Figure 17. Effect of pH on rate of locomotion (velocity 
versus pH at several time intervals). Values on Y-axes are 
mean rates of locomotion (X40) in millimeters per second; 
values on X-axes indicate pH of buffer solution following 
introduction of cells. Time intervals are as follows: A, 
0.5 minute; B, 1.0 minute; G, 2.0 minutes; D, 2.5 minutes; 
E, 3.0 minutes; F, 4.0 minutes: G, 5»0 minutes; H, 10.0 
minutes. Buffers in pH range 4.8 to 8.2 were prepared from 
M/10 citric acid and M/5 dlsodium phosphate; those in pH 
range 8.3 to 9»7 were prepared from M/5 boric acid and M/5 
sodium hydroxide. Dilutions of 1:100 were used to obviate 
osmotic pressure effects. 
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Table 10= Composition and pH of buffer solutions. 

Composition of buffer solution 
volumes in milliliters 

pH of buffer solu­
tion diluted 1:100 

M/10 M/5 M/5 M/5 
citric disodium boric sodium 
acid phosphate acid hydroxide 

Before After 
addition addition 
of cells of cells 

24.6 15.4 — —  4.63 4.83 
19.4 20.6 5.82 5,96 
16.8 23.2 —w 6.33 6.37 
14.0 26.0 —— 6.73 6.75 
12.7 27.3 7.00 7.02 
11.7 28.3 — 7.10 7.11 
10.8 29.2 —  —  7.18 7.20 
8.5 
lL O 

31.5 — — —  7.40 
< 7  «4 

7.40 
" »55 

3.8 36.2 
(  »  f a  

7.86 
( •  ( D  

7.82 
2.5 37.5 8.04 8.00 
1.8 38.2 — — mm*» 8.20 8.10 
1.1 38.9 — — 8.42 8.17 

50.0 7.40 8.31 
— —  50.0 8.6 8.55 8.53 

—— 50.0 12.0 8.80 8.77 
— —  —— 50.0 16.4 9.03 8.92 

5o.o 21.4 9.24 9.15 
— " 5o.o 26.7 9.37 9.17 

—— 50.0 32.0 9.40 9,28 
— — —  5o.o 36.9 9.56 9.39 
— —— 50.0 40.8 9.80 9.60 

— 50.0 43.9 9.80 9.67 
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Table 11. Effect of pH on rate 

pH 4.83 (29*0°C) 

T K S Y 

of locomotion. 

pH 5"96 (29.0°C) 

T N S V 

0.5 — — — 0.5 4 229 57.3 
1.0 5 202 40.4 1.0 13 543 41.8 
1.5 18 859 47*7 1.5 34 1450 42.? 
2.0 22 1090 49.6 2.0 21 876 41.7 
2.5 18 867 48.1 2.5 15 624 41.6 
3.0 20 852 42.6 3.0 20 824 41.2 
4.0 20 880 44.0 4.0 24 999 41.6 
5.0 28 1258 44.9 5.0 24 963 40.1 
7-0 26 1120 43.1 7.0 22 890 40.5 
10.0 25 98? 39.5 10.0 22 803 36.5 

pH 6.3? (29.0°C) 

T N S V 

0.5 3 235 78.3 
1.0 15 ?6l 50.8 
1.5 32 1366 42.7 
2.0 34 1500 44=1 
2.5 32 1407 43.9 
3.0 28 1115 39.9 
4.0 30 1230 41.0 
5.0 34 1256 36.9 
7.0 35 1396 38.8 
10.0 31 1195 38.5 

pH 7.02 (28.8°C) 

T N S V 

0.5 3 235 78.3 
1.0 7 288 41.2 
1.5 15 622 41.5 
2.0 22 841 38.3 
2.5 14 516 36.9 
3.0 9 322 35.8 
4.0 9 369 41.0 
5.0 15 57 0 38.0 
7.0 18 657 36.5 
10.0 20 736 36.8 

pH 6.75 (29«0°C) 

T N S 7 

0.5 4 316 79.0 
1.0 5 194 38.8 
1.5 12 484 40.3 
2.0 14 552 39.5 
2.5 16 616 38.5 
3.0 12 453 37.8 
4.0 12 439 36.6 
5.0 15 545 36.3 
7.0 18 651 36.2 
10.0 23 852 37.1 

pH 7.il (28.8°0) 

T N S V 

0.5 3 237 79.0 
1.0 7 491 70.2 
1.5 13 526 40.4 
2.0 14 581 41.6 
2.5 25 942 37.7 
3.0 26 963 37.1 
4.0 26 1019 39.2 
5.0 26 1010 38.9 
7.0 28 1056 37.7 
10.0 4o 1483 37.1 
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Table 11. (Continued)» 

pH 7.20 (28.8°C) pH 7.40 (29.0°C) 

T H S V T N S V 

0.5 2 165 82.5 0.5 7 416 59.4 
1.0 14 725 51.8 1.0 7 312 44.6 
1.5 16 747 46.7 1.5 19 806 42.4 
2.0 25 1067 42.7 2.0 28 1248 44.6 
2.5 17 659 38.7 2.5 28 1220 43.6 
3.0 15 574 38.3 3.0 29 1226 42.3 
4.0 16 620 38.7 4.0 29 1210 41.7 
5.0 15 585 39.0 5.0 26 1080 41.6 
7.0 24 906 37.7 7.0 23 907 39.4 
10.0 23 878 38.2 10.0 32 1241 38.8 

pH 7.75 (29.0°C) pH 7.82 (29.0*0) 

T N S V T N S Y 

0.5 — — — 0.5 3 236 78.7 
1.0 4 284 71.1 1.0 8 394 49.3 
1.5 4 173 43.3 1.5 13 584 44.9 
2.0 10 436 43.6 2.0 15 655 43.7 
2.5 11 392 35.7 2.5 17 780 45.9 
3.0 15 653 43.6 3.0 15 614 40.9 
4.0 14 516 36.9 4.0 19 796 41.9 
5.0 14 573 40.8 5-0 21 983 46.8 
7.0 15 601 40.1 7.0 22 921 41.8 
10.0 15 563 37.5 10.0 34 1373 40.4 

pH 8.00 (29.0*0 pH 8.10 (29.0°C) 

T M S Y T N S V 

0.5 2 108 54.0 0.5 
1.0 2 77 38.5 1.0 3 148 49.3 
1.5 7 294 42.0 1.5 6 269 44.9 
2.0 13 569 43.8 2.0 16 854 53.3 
2.5 19 790 41.6 2.5 20 1024 51.3 
3.0 15 704 46.9 3.0 24 1425 59.4 
4.0 — — — 4.0 23 1334 58.0 
5.0 25 1071 42.8 5.0 23 1345 58.5 
7.0 16 719 44.9 7-0 22 1123 51.1 

10.0 — — — 10.0 20 780 39.0 
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Table 11. (Continued). 

pH 8.17 <29.0°C) PH 8.31 (28.3°C) 

T N S V T N S V 

0.5 1 61 61.0 0.5 
493 49.3 1.0 9 414 46.0 1.0 10 493 49.3 

1.5 10 401 40.1 1.5 25 1228 49.0 

2.0 25 1154 46.2 2.0 31 1529 49.3 
2.5 27 1406 52.1 2.5 27 1491 
3.0 30 1686 56.2 3.0 26 1714 66.0 
4.0 34 2213 65.2 4.0 31 2096 67.6 
5.0 30 1949 65.0 5.0 32 2262 70.7 
7.0 31 1516 48.9 7.0 32 2324 72.7 
10.0 25 1017 40.7 10.0 27 1562 57.8 

PH 8.53 (28.3°0) pH 8.77 (28.1°C) 

T N S V T N S V 

0.5 2 93 46.5 0.5 
1.0 2 95 47.5 1.0 3 110 36.7 
1.5 6 237 39.5 1.5 5 195 39.0 
2.0 10 373 37.3 2.0 7 357 51.0 
2.5 14 553 39.5 2.5 16 730 45.6 
3.0 16 688 43.0 3.0 14 664 47.4 
4.0 12 757 63.I 4.0 9 620 68.9 
5.0 18 1147 63-7 5.0 8 666 83.3 
7.0 9 696 77.3 7.0 7 531 75.9 
10.0 8 541 67.7 10.0 3 258 86.0 

pH 8.92 (28.2°C) pH 9.15 (28.3°C) 

T N S V T N S 
_ 

0.5 2 125 62.5 0.5 1 102 102.0 
1.0 12 519 43.3 1.0 4 164 41.0 
1.5 17 720 42.3 1.5 9 365 40.6 
2,0 21 946 45.1 2.0 14 599 42.7 
2.5 26 1155 44.5 2.5 20 919 45.9 
3.0 26 1341 51.6 3.0 21 1035 49.3 
4.0 30 1873 62.5 4.0 16 989 6I.9 
5.0 23 1566 68.1 5.0 16 943 59.0 
7.0 18 1202 66.8 7.0 17 1217 71.6 
10.0 11 979 89.I 10.0 19 1469 77.4 
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Table 11. (Continued). 

pK 9.17 (28.3°0) pH 9.28 (28.3°0) 

T N S V T N S V 

0.5 0,5 
1.0 2 62 31.0 1.0 1 33 33.0 
1.5 6 232 38.7 1.5 11 466 42.3 
2.0 8 323 40.4 2.0 25 1023 40.9 

2.5 18 742 41.3 2.5 28 1168 41.7 

3.0 19 872 45.9 3.0 32 1410 44.1 
4.0 27 1212 44.9 4.0 26 1153 44.4 
5.0 17 860 50.6 5.0 22 1024 46.6 

7.0 14 989 70.6 7.0 16 737 46.1 
10.0 13 841 64.7 10.0 16 706 44.1 

pH 9.39 (28.3*0) pH 9.60 (28.5*0) 

T N S V T N S 7 

0.5 0.5 
36.0 1.0 3 108 36.0 1.0 3 108 36.0 

1.5 11 447 40.6 1.5 10 364 36.4 
2.0 23 960 41.7 2.0 18 750 41.7 
2-5 27 1105 40.9 2.5 24 954 39.7 
3.0 26 1140 43.8 3.0 24 948 39.5 
4.0 22 951 43.2 4.0 16 651 40.7 
5.0 16 676 42.3 5.0 10 385 38.5 
7.0 10 543 54.3 7.0 4 140 35.0 
10.0 9 409 45.5 10.0 9 312 34.7 

pH 9.6? (28.5°C) 

T N s V 

0.5 1 75 75.0 
1.0 4 207 51.8 
1.5 11 482 43.8 
2.0 20 889 44.5 
2.5 17 732 43.1 
3.0 17 764 44.9 
4.0 14 628 44.8 
5.0 10 453 45.3 
7.0 5 223 44.6 
10.0 5 191 38.2 
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sections of the pH range, as follows: curve A, 4.83-8.00; 

curve B, 8.10 only; curve C, 8.1? only; curve D, 8.31-8.53; 

curve E, 8.77-9.17; and curve F, 9.28-9.6?. 

The basal or steady state level of activity under the 

conditions of the experiment seems to be that associated with 

the y - 40 ordinate. Throughout the entire acid range and 

at both extremities of the alkaline range, the rate-time 

curve in Figure 16 is sigmoidal, with (a) a shoulder repre­

senting excitation and briefly-sustained hyper-normal acti­

vity; (b) a diagonal of transition (which resembles an ex­

ponential adsorption curve); and (c) a toe leading into the 

steady state. In the range pH 8.1-9*2, however, the toe 

portion of the response curve is modified by development of 

a second peak. The activity represented by this feature is 

considerable (though never as great as that of the shoulder 

maxima in A and F), and, at least in D and E, is maintained 

for a relatively long time. 

The rate-pH curves of Figure 1? show the development of 

this peak particularly well. The rise commences almost at 

once, in B (1 minute), and continues throughout the period 

of observation (10 minutes). Very broad at first, the peak 

narrows rapidly as it rises. The right margin of its base 

remains relatively stationary at about pH 9*5 (marked in B 

by the minimum); narrowing results from a progressive shift 

of the left margin up the pH scale. 
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The position of the peak in Figure 1? hears no obvious 

relationship to the pH of the culture from which the cells 

were taken. Neither does it seem to be the consequence of 

a change in buffer type from citrate-phosphate to borate-

NaOH, which occurred between pH 8.17 and pH 8.31. There is 

likewise no reason to believe that it is a manifestation of 

an osmotic pressure change; the buffer solutions were used 

in hypotonic concentrations. In addition, the cells dis­

played essentially the same locomotor velocity in dilutions 

containing widely differing concentrations of the buffer com­

ponents (e.g., at pH 7*40 and pH 9*67 in F). Whatever the 

ionic conditions associated with the peak may be, they re­

sult in reactions or physical changes which promote the ac­

tion of the cilia. 

The results presented in Figure 17 are at variance with 

those obtained in other studies of the relationship between 

pH and the rate of locomotion in cillâtes. The curves pre­

sented by Chase and G-laser (1930, p* 635) for Paramecium and 

by Mills (1931* P* 24) for Colpidium are conspicuously bi-

modal, with minima at the extremities of the pH range (about 

pH 4.5 to pH 10) and one at (or near) neutrality. Their 

M-shaped curves (similar to A in Figure 17) bear striking 

and suggestive resemblance to the time-pressure curves pre­

sented in Figure 15 in this thesis, and lead to the suspicion 

that the effects displayed may be due as much to other 
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factors, cited above, as they are to pH. In his own earlier 

study of the relationship between pE and rate of locomotion 

in Paramecium aurella, the author (Ferguson, 1957, P« 213, 

Figure I?) obtained a 4-minute exposure time curve which, 

with the exception of a single high datum point at about pH 

5.7, roughly resembles the pH 5*5-8.5 portion of curve F in 

Figure 1?» 

Rate-pH curves having the general form of an Inverted 

V, symmetrical about a pH abscissa near neutrality, have been 

obtained in studies by G-aw (1936) on contractile vacuole pul­

sation in paramecia; Lee (1942b) on food vacuole formation 

in paramecia; and van Wagtendonk and Zill (1947) on "killer 

substance" (paramecin) inactivation. 

D. Vertebrate Neurohormones 

Curves in Figure 18 show the effects on rate of loco­

motion of acetylcholine chloride (A-C) and adrenaline chlo­

ride (D-F). 

The curves are essentially alike and occupy correspond­

ing positions on the coordinate field. There appear to be 

no important differences in response. It is concluded that 

acetylcholine and adrenaline, in the concentration ranges 

tested, have no specific physiological effects on the Para­

mecium. 

These results are at variance with those of Wense (1935), 
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who reported that the locomotor activities of paramecia were 

stimulated by acetylcholine and inhibited by adrenaline. 

There is evidence that neurohormones and related sub­

stances occur in cillâtes. They presumably have some phys­

iological role in these organisms. Bayer and Wense (193&) 

were able to demonstrate acetylcholine-like and adrenaline­

like effects of Paramecium extracts on various types of 

muscle preparations. They observed that some of the extracts 

fluoresced apple-green under the ultra-violet lamp, a pro­

perty also displayed by adrenaline. Seaman and Houlihan 

(1951) found that various agents which inhibit the action 

of acetylcholinesterase also inhibit locomotion In Tetra-

hymena, suggesting that this enzyme, and therefore, acetylcho­

line is indispensable to coordinated ciliary action. 

It seems reasonable to suppose, therefore, that adren­

aline and acetylcholine do have physiological roles in para­

mecia. Had higher concentrations of these agents been em­

ployed, the results of this experiment might have been more 

conclusive. 

E. Sodium Cyanide 

The effects of sodium cyanide on rate of locomotion are 

shown in Figure 19. In B through D, rate is plotted as a 

function of time at several concentrations; in E through Gr, 

rate of locomotion is expressed as per cent of control 
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Figure 18» Effect of vertebrate neurohormonea on rate of 
locomotion» A-C, acetylcholine chloride; D-F, adrenaline 
chloride. Values.on Y-axes are mean rates of locomotion 
(X40) in millimeters per second; values on X-axes are min­
utes of exposure of cells to solutions, upper curve (black 
symbols) in A and D is that of control. Acetylcholine con­
centrations: A (white symbols), 10.00 mg/ml; B (black sym­
bols), 0.10 mg/ml; B (white symbols), 0.01 mg/ml; C, 1.00 
mg/ml. Adrenaline concentrations: D (white symbols), 
1:100,000; E, 1:10,000,000; F, 1:1,000,000. 
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Table 12. Effect of acetylcholine chloride on rate of loco 
motion. 

Control (29.0*0) 0.01 mg/ml (29.0*0) 

T N s V T N S V 

0.5 __ __ 0.5 
1.0 24 1834 76.4 1.0 30 1976 65.8 
1.5 26 2308 88.8 1^5 30 2155 71.7 
2.0 32 2877 89.9 2.0 28 2086 74.5 
2.5 34 3300 97.2 2.5 31 2180 70.3 
3.0 53 4842 91.3 3.0 26 1731 66.6 
3.5 30 2850 95.0 3-5 31 1853 59.8 
4.0 38 3579 94.-3 4.0 33 2023 61.4 
4.5 28 2551 91.2 4.5 28 1659 59.3 
5.0 28 2426 86.7 5.0 31 1801 58.1 
7.0 22 1847 84.0 7.0 21 1155 55.0 
9.0 14 762 54.4 9.0 26 1241 47.7 
11.0 15 778 51.9 11.0 21 985 46.9 
13.0 7 298 42.6 13.0 27 1176 43.5 
15.0 10 476 47.6 15.0 33 1415 42.9 

0.1 mg/ml (29.0*0) 1.0 mg/ml (29.0°0) 

T N S Y T N S Y 

0.5 11 775 70,4 0.5 __ 

1.0 21 1828 87.1 1.0 40 2430 60.7 
1.5 38 3335 87.8 1.5 22 1697 77-2 
2.0 33 2944 89.2 2.0 34 2672 78.6 
2.5 31 2582 83.3 2.5 35 2609 74.6 
3.0 27 2348 87.0 3.0 31 2332 75-2 
3.5 35 2885 82.4 3-5 42 3129 74.6 
4.0 37 2995 81.1 4.0 39 2844 72.9 
4.5 46 3569 77.7 4.5 31 2196 70.8 
5.0 39 3084 79.1 5.0 37 2537 68.6 
7.0 37 2615 70.8 7.0 41 2567 62.7 
9.0 37 2351 63.6 9.0 41 2600 63.4 
11.0 40 2204 55.0 11.0 45 2648 58.9 
13.0 33 1770 57.3 13.0 52 2806 54.0 
15.0 28 1368 48.8 15.0 53 2889 54.5 
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Table 12. (Continued). 

10 mg/ml (29.0°C) 

T N S V 

0.5 
1.0 — —  — —  

1.5 2 56 28.0 
2.0 8 274 34.3 
2.5 10 517 51.7 
3.0 11 686 62.3 
3-5 14 915 65.3 
4.0 27 1543 57.2 
4.5 17 994 58.5 
5.0 25 1373 55.4 
7.0 24 1103 46.0 
9.0 17 668 39.3 

11.0 6 192 32.0 
13.0 5 125 25.0 
15.0 4 77 19.0 

velocity and is plotted as a function of concentration at 

several times of exposure. In a concentration of ÎO~^ M, 

sodium cyanide caused immediate Immobilization of the cells. 

The rate-time curves B and upper C, for the low con­

centrations, are above that of the control, A, on the coor­

dinate field, indicating stimulation; those of the high con­

centrations, lower C and D, are below it, indicating inhi­

bition. The lowest concentration tested had the most marked 

stimulatory effect. In spite of a ten-fold difference, the 

high concentrations inhibited to virtually the same extent. 

From these results it may be concluded that (a) the physio­

logical effects of cyanide (stimulation versus inhibition) 
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Table 13. Effect of adrenaline chloride on rate of loco­
motion. 

Control (29.1°0) 

T N 3 V 

0.5 6 398 66.3 
1.0 26 1864 71.7 
1.5 27 2134 79.1 
2.0 24 2091 8?.2 
2.5 22 1798 81.7 
3.0 24 1873 78.0 
3.5 22 1726 78.4 
4.0 25 2076 83.0 
4.5 21 1724 82.1 
5.0 21 1596 76.0 
7.0 19 1183 62.3 
9.0 18 1064 59.2 

11.0 18 909 50.5 
13.0 23 1082 47.0 
15.0 20 1025 51.3 

1:10,000,000 (29.3°C) 

T N S V 

0.5 13 1101 77.8 
1.0 21 1828 87.1 
1.5 27 2382 88.2 
2.0 23 1931 83.9 
2.5 29 2396 82.7 
3.0 21 1754 83.6 
3.5 23 1935 84.2 
4.0 28 2122 75.8 
4.5 25 1917 76.7 
5.0 23 1550 67.4 
7.0 23 1532 66.6 
9.0 28 1840 65.7 

11.0 34 1689 49.7 
13.0 35 1961 56.0 
15.0 32 1804 56.4 

1:1,000,000 (29.2°C) 1:100,000 (29.2*0) 

T N S V T N S V 

0.5 11 756 68.7 0.5 3 111 37.0 
1.0 17 1100 64.8 1.0 14 744 53.1 
1.5 20 1466 73.2 1.5 18 1163 64.7 
2.0 25 1500 60.0 2.0 21 1289 61.3 
2.5 25 1575 63.O 2.5 24 1427 59.5 
3.0 21 1397 66.5 3.0 25 1471 58.8 
3.5 23 1492 64.9 3.5 25 1385 55.4 
4.0 25 1556 62.2 4.0 26 1544 59.4 
4.5 21 1399 66.7 4.5 27 1349 50.0 
5.0 24 1537 64.1 5.0 27 1469 54.4 
7.0 17 927 54.5 7.0 19 914 48.1 
9.0 23 1281 55.7 9.0 28 1330 47.5 
11.0 19 1101 57.8 11.0 24 957 39.9 
13.0 24 1258 52.4 13.0 19 833 43.8 
15.0 24 1355 56.5 15.0 21 846 40.3 
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depend on concentration; and (b) at least a portion of the 

metabolic mechanism which furnishes energy for locomotion in 

Paramecium is cyanide-insensitive. 

The first conclusion is in line with the Arndt-Schultz 

Law, which has been stated by Thimann (1956) as follows 

(p. 156): "Every poison causes either a reduction or an in­

crease in physiological performance, corresponding to..,its 

concentration.11 Commenting on this principle, he says (p. 

146): "... if a substance typically inhibits a process it 

commonly (not always) stimulates it at sufficiently low con­

centrations. " 

Stimulation-inhibition effects similar to those shown 

in Figure 19 have been noted in connection with the action 

of many different types of chemical substances on a wide 

variety of plant and animal organisms. Niethammer (1927)> 

for example, found that the salts of chromium, silver and 

lead in very low concentration promoted the growth of Asper­

gillus. Cole (1938), studying the effects of sodium and 

potassium salts on responses in the barnacle, found that low 

concentrations caused opening of the valves and high concen­

trations caused closure. The stimulatory effects of cyanide 

in very low concentrations has been reported by Johnson 

(1951, P* 583), in connection with the production of light 

by luminous bacteria, and by Arisz, Camphuis, Heikens and 

van Tooren (1955, P* 330) in connection with the secretion 
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Figure 19. Effect of sodium cyanide on rate of locomotion» 
A-D, velocity versus time of exposure at several concentra­
tions. Values on Y-axes are mean rates of locomotion (X40) 
in millimeters per second; values on X-axes are minutes of 
exposure of cells to solutions. Curve in A is that of con­
trol. Cyanide concentrations are as follows: B, 10~-> M: 
C (upper curve), 10"^ M; C (lower curve), 10"3 M; D, 10"2 M. 

E-G, velocity versus concentration at several time intervals. 
Values on Y-axes are mean rates of locomotion (read from 
curves in A-D) expressed as per cent of control velocity; 
values on X-axes are logarithms of molar concentrations (M) 
of cyanide. Time intervals are as follows: E, 4.0 minutes; 
F, 9»0 minutes; G-, 14.0 minutes. 
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Table 14, Effect of sodium cyanide on rate of locomotion» 

Control (28.0°C) 10~5M (2?.?°C) 

T N S V T N s 7 

0.5 2 135 67-5 0.5 16 1623 101.5 
1.0 27 1858 68.8 1.0 21 1838 87.5 
1.5 28 2232 79-7 1.5 28 2581 92.2 
2.0 31 2477 79.9 2.0 32 2942 92.0 
2.5 31 2265 73.1 2.5 28 2704 96.6 
3.0 29 2210 76.2 3.0 28 2583 92.2 
3.5 33 2434 73.8 3.5 34 3278 96.4 
4.0 32 2623 82.0 4.0 29 2667 92.0 
4.5 33 2618 79.3 4.5 36 3336 92.6 
5-0 31 2513 81.1 5.0 39 3714 95.2 
7.0 37 2923 79.0 7.0 29 2740 94.4 
9.0 25 1882 75.3 9.0 27 2642 97-8 
11.0 28 1908 68.1 11.0 32 3143 98.3 
13.0 20 1315 65.8 13.0 33 3163 95.8 
15.0 31 1973 63.6 15.0 33 3292 99.7 

10"%ï (27.7*0) 10"% (27.7*0) 

T N S V T N S V 

0.5 14 1276 91.2 0.5 
1.0 35 3035 86.7 1.0 13 531 40.8 
1.5 35 3011 86.0 1.5 21 872 41.5 
2.0 34 3024 89.0 2.0 16 740 46,2 
2.5 41 3591 87.6 2.5 19 809 42.6 
3.0 37 3000 81.1 3.0 24 1215 50.6 
3.5 37 3128 84.6 3.5 23 1155 50.2 
4.0 36 3069 85.3 4.0 22 1108 50.4 
4.5 36 3021 86.7 4.5 16 794 49.6 
5.0 31 2746 88.7 5.0 15 733 48.8 
7.0 38 3217 84.7 7.0 12 490 40.8 
9.0 34 2896 85.1 9.0 8 333 41.6 
11.0 36 3232 89.8 11.0 7 274 39.1 
13.0 30 2752 91.8 13.0 3 107 35.7 
15.0 31 2552 82.3 15.0 

35.7 
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Table 14. (Continued). 

10"2M (2?.?°C) 

T N S V 

0.5 32 1139 35.6 
1.0 23 814 35.4 
1.5 34 1817 53.4 
2.0 28 1531 54.7 
2.5 27 1425 52.8 
3.0 31 1633 52.7 
3-5 19 975 51.3 
4.0 18. 998 55.4 
4.5 14 705 50.3 
5.0 13 667 51.3 
7.0 10 452 45.2 
9.0 7 302' 42.9 
11.0 4 163 40.8 
13.0 2 70 35.0 
15.0 2 81 40.5 

of salt by the glands of certain tidal plants. 

The second of the two conclusions drawn from the data 

in Figure 19 is supported in part by results obtained in 

other Investigations. Lund (1918, 1921) was among the first 

to report cyanide insensitivity in the Paramecium. He meas­

ured the rate of respiration of cells in KCN solutions for 

periods ranging up to fifty hours and concluded on the basis 

of his results that the respiratory process was entirely In­

dependent of the toxic effects of cyanide, even at concen­

trations strong enough to cause lysis of the cells. Similar 

observations were made by Gerard and Hyman (1931) and by 

Shoup and Boykin (1931)* The latter workers found that 
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cells pre-conditioned in the absence of food in distilled 

water showed no further decrease in rate of respiration when 

transferred to solutions of KCN ranging in concentration from 

M/10,000 to M/200, although exposure times were as long as 

four hours• Working with luminescent bacteria, Strehler 

(1955) found that the mechanism of light production, though 

dependent on oxygen, was essentially unaffected by cyanide. 

The possibility of alternate metabolic pathways, differ­

ing in sensitivity to cyanide and other toxic substances, is 

discussed by Ormsbee and Fisher (1943), and will be considered 

further in connection with the experiment on urethane* 

Thimann (1956), considering the contrasting effects of toxic 

agents in various concentrations, suggests that there are 

factors in living systems which normally retard, as well as 

promote, metabolic processes, and that the delicate balance 

between these influences may be shifted one way or another 

depending upon the relative sensitivities of the antagonists. 

Relationships between cyanide sensitivity and such fac­

tors as cell age and state of nutrition have also been ex­

plored. Lund (1918) reported that young cells and those 

lacking food were more susceptible to the toxic effects of 

cyanide than those which were older and better fed. Pace 

(1945), in a similar type of study, found that the inhibi­

tory effect of KCN on oxygen consumption was greatest on 

cells from newly-established cultures (5-7 days old) and 
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those in which there were high levels of carbohydrate (dex­

trose) . 

Cytochrome pigments have been reported in paramecia by 

Sato and Tamiya (1937), suggesting that at least a portion 

of the respiratory metabolism of this organism is of the 

usual type. This conclusion was reached by Boell (1942), 

who found that KCN, in the concentration ranges usually em­

ployed in studies of respiration, depressed oxygen consump­

tion in Paramecium calkinsi by about 50%* Appraising hie re 

suits, he says (p. 494): 

Insofar as susceptibility to cyanide and azide can 
be used as tests for the functioning .in the cell 
of the cytochrome-cytochrome oxidase system, the 
results suggest that the respiratory mechanism of 
Paramecium resembles that of most animal and plant 
cells. 

F. Anesthetics 

The effects of anesthetic agents on rate of locomotion 

are shown in Figure 20. Curves A through C represent the 

action of urethane (ethyl carbamate), while those of D 

through F represent the action of various alcohols. Rate of 

locomotion is plotted as a function of time for each of the 

several concentrations tested. 

Relatively high concentrations of urethane were re­

quired to produce obvious anesthetic effects within the 15-

minute period covered by the observations. Curves for the 
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Figure 20. Effect of anesthetics on rate of locomotion. 
A-C, urethane (ethyl carbamate); D-F, alcohol homologues. 
Values on Y-axes are mean rates of locomotion (X40) in 
millimeters per second; values on X-axes are minutes of 
exposure of cells to solutions. 

Urethane concentrations are as follows: A (white symbols), 
0.1 M; B, 0.001 M; 0 (black symbols), 0.01 M; G (white sym­
bols), 0.2 M. Upper curve (black symbols) in A is that of 
control. 

Alcohols and concentrations are as follows: D (white sym­
bols), 0.4 M ethyl; D (black symbols# lower curve), 1.0 M 
methyl; E (white symbols), 0.08 M n-propyl; F (white sym­
bols), 0.026 M primary iso-amyl; F (black symbols, lower 
curve), 0.064 M n-butyl. Upper curves (black symbols) of 
D, E are those of Control 1; upper curve (black symbols) 
of F is that of Control 2. 
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Table 15.  Effect of urethane (ethyl carbamate) on rate of 
locomotion. 

Control (27-0°C) 0.001M (26.4°C) 

T N S V 

0.5 10 909 90.9 
1.0 30 2817 93.9 
1.5 33 3079 93.3 
2.0 33 2822 85.5 
2.5 36 3279 91.2 
3.0 38 3384 89.1 
3-5 33 2769 84.0 
4.0 40 3102 77.5 
4.5 30 2258 75.2 
5-0 25 1596 63.8 
7-0 13 685 52.7 
9.0 10 403 40.3 
11.0 11 378 34.4 
13.0 11 403 36.7 
15.0 4 158 39.5 

T N S V 

0.5 7 556 79.5 
1.0 19 1672 88.0 
1.5 28 2613 93.3 
2.0 21 1981 94.3 
2.5 25 2303 92.2 
3.0 25 2344 93.8 
3.5 30 2777 92.3 
4.0 24 2137 89.0 
4.5 20 1538 76.9 
5.0 25 2013 80.5 
7.0 15 907 60.5 
9.0 14 558 40.6 
11.0 16 617 38.6 
13.0 14 498 35 «6 
15.0 8 311 38.9 

0.01M (26.6°C) 0.1M (27.0°0) 

T N S V T N S V 

0.5 6 415 69.2 0.5 14 691 49.3 
1.0 14 1116 79.7 1.0 14 1012 72.3 
1.5 15 1359 90.5 1.5 17 1034 60.8 
2.0 22 1976 89.8 2.0 24 1598 66.7 
2.5 24 2159 89*9 2.5 26 1581 60.8 
3.0 26 2452 94.3 3.0 23 1396 60.7 
3.5 21 1809 86.2 3.5 20 992 49.6 
4.0 27 2278 84.3 4.0 9 402 44.7 
4.5 22 1869 84.9 4.5 6 144 24.0 
5.0 19 1502 79.0 5.0 5 192 38.4 
7.0 16 920 57.5 7.0 3 51 17.0 
9.0 14 712 50.8 9.0 — — — 

11.0 8 323 40.3 11.0 — —-W 
13.0 12 468 39.0 13.0 — *• — — 

15.0 — — — 15.0 — — — — 
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Table 15. (Continued). 

0.2M (26.5°C) 

T N S V 

0.5 8 316 39.5 
1.0 7 371 53.0 
1.5 8 314 39.3 
2.0 10 347 34.7 
2.5 8 231 28.9 
3-0 5 89 17.8 
3-5 8 76 9.5 
4.0 4 34 8.5 
4.5 — w 
5.0 —— — —  —— 

7.0 —— — —  —— 

9.0 *— —— —— 

11*0 — —  —— — —  

13.0 — —  —— —— 

15.0 —— —— 

control (A, black symbols) and those of the two lowest con­

centrations tested (3, 0.001 M and C, black symbols, 0.01 M) 

are almost identical, although the slope of the tail (7-14 

minute interval) in the 0.01 M curve is greater than that in 

the control. The curves for the two highest concentrations 

tested (A, white symbols, 0.1 M, and 0, white symbols, 0.2 M) 

occupy much lower positions on the coordinate field and 

clearly indicate inhibition. In them, an abrupt peak is im­

mediately followed by a steep, linear decline towards zero 

velocity. 

Parallel and independent respiratory mechanisms, differ­

ing in sensitivity to urethane, may exist in some ciliates. 
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Table 16. Effect of alcohol homologues on rate of locomotion. 

Control 1 (28.0°C) 

T N S 7 

1.0 47 4629 98.6 
2.0 47 4798 102.1 
3.0 47 5028 107-0 
4.0 47 5154 109.6 
5.0 47 5165 110.0 
7.0 47 4911 104.4 
9.0 47 4830 102.8 
11.0 47 4707 100.2 
14.0 47 4627 98.5 
17.0 47 4575 97.4 

Control 2 (27.5°C) 

T N S V 

1.0 40 3511 87-7 
2.0 48 4298 89.6 
3.0 48 4699 97.8 
4.0 49 4950 101.1 
5.0 48 4814 100.5 
7.0 49 4695 95.9 
9.0 48 4730 98.7 
11.0 48 4680 97.7 
14=0 50 4696 94.0 
17.0 50 4804 96.1 

1.0M Methyl 0.4M Ethyl 
(28.3°C-28.0°C) (28.0°C) 

T N S 7 T N S 7 

1.0 47 3572 80.3 1.0 46 3822 83.1 
2.0 47 3320 70.7 2.0 45 356? 79.3 
3.0 49 3143 64.2 3.0 41 3309 80.8 
4.0 48 3202 64.7 4.0 40 3252 81.2 
5.0 45 2932 65.2 5.0 31 2399 77.4 
7.0 42 2516 59.9 7.0 35 2595 74.2 
9.0 42 2356 56.1 9.0 21 1536 73.2 
11.0 40 2176 54.4 11.0 25 1742 69.7 
14.0 35 1780 50.8 14.0 17 1165 68 » 5 
17.0 32 1560 48.8 17.0 17 1079 63.5 
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Table 16. (Continued). 

0.08M n-Propyl 0.026M Primary iso-amyl 
(27»5°C) (27*5 0) 

T N s V 

1.0 16 1277 79.8 
2.0 26 2058 79.2 
3.0 47 4043 86.1 
4.0 47 4336 92.4 
5«o 47 4455 94.8 
7.0 40 3789 94.8 
9.0 20 1836 91.8 
11.0 10 900 90.0 
14.0 10 670 67.0 
17.0 15 942 62.8 

T N S V 

1.0 41 3267 79.8 
2.0 41 3270 79.8 
3.0 41 3142 76.7 
4.0 41 3242 79.1 
5.0 40 3175 79.4 
7.0 41 3238 76.6 
9.0 41 3263 79.7 
11,0 42 3271 77.8 
14.0 41 2998 73.2 
17.0 48 3576 74.5 

0.064M n-Butyl 
(2?«8°C) 

T N S V 

1.0 34 2608 76*8 
2.0 29 2141 73.8 
3.0 25 1783 71,3 
4.0 22 1595 72.5 
5.0 40 2824 70.6 
7.0 41 2808 68.6 
9.0 42 2797 66.7 
11.0 42 2879 68.6 
14.0 44 2853 64.8 
17.0 41 2775 67.7 
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Ormsbee and Fisher (1943) offer evidence which indicates 

that cell division in Tetrahymena (and probably also in 

Colpldlum and Glaucoma) depends on a separate respiratory 

pathway which is relatively sensitive to urethane. They re­

port that cell division is completely inhibited by concentra­

tions not exceeding 0.1 M. As shown by the high concentra­

tion curves in A and 0 of Figure 20, locomotor activity in 

the Paramecium is also completely inhibited in a correspond­

ing concentration range (0.1 M to 0.2 M); however, it cannot 

be concluded from this fact alone that the metabolic path­

way supplying energy to the cilia differs in any way from 

that which supplies energy for other cellular processes. 

The curves in D through F of Figure 20 represent the 

anesthetic action of five homologous alcohols in five dif­

ferent concentrations. The test concentrations were selected 

with the hope of obtaining a set of superimposable rate-time 

curves, i.e., those having identical form and occupying com­

parable positions in the coordinate field. They were cal­

culated by means of the relation = C2an (Cole, 1938, p. 

131; see also Traube, 1904, pp. 550-551) * in which C^ is 

the concentration of the lower member of a pair of homologues, 

G2 the concentration of the higher member of the pair neces­

sary to produce an effect equal to that of Cp a the ratio 

of the successive concentrations, and n the difference in the 

number of carbon atoms in the homologues. In his studies of 
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the anesthetic action of alcohols on several animals, in­

cluding the frog, the barnacle and the planarian, Cole found 

that the term a in the equation varied in value from about 

2.8 to 3.0. On this basis, a value of 2.5 was arbitrarily 

assigned. C^ for methyl alcohol was taken as 1.0 M. The 

calculated concentrations for the successive members of the 

homologous series were as follows: ethyl alcohol, 0.4 M; 

n-propyl alcohol, 0.16 M; n-butyl alcohol, 0.064 M; and pri­

mary iso-amyl alcohol, 0.026 M. The n-propyl alcohol proved 

in the tests to have much greater potency than was expected; 

cells exposed to it settled to the bottom of the observation 

chamber almost Immediately. In order to obtain the response 

curve in F (white symbols) of Figure 20, the concentration 

was reduced 50#, to 0.08 M. 

The rate-time curves in D and F of Figure 20 are unusual 

in that they are perfectly straight lines which almost ex­

actly parallel their controls. With respect to linearity, 

they closely resemble the alcohol narcosis curves of Magal 

(1907, P» 212). Except for that of n-propyl alcohol, they 

are very nearly superimposable, indicating that a = 2.5 

rather closely approximates the correct value. In each 

curve set (control A, ethyl, methyl, n-propyl, and control 

B, n-butyl, primary iso-amyl), however, the curve represent­

ing the higher member of a pair of successive homologues is 

above its mate. From this it would appear that a - 2.5 is 
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somewhat excessive, i.e., that the successive concentrations 

were too dilute, rather than too concentrated» 

According to Bills (1923, p. 55), the equi-narcotic con­

centrations (in per cent) of the first four members of the 

series methyl alcohol to n-propyl alcohol are, for the Para­

mecium, 5»0, 3*3, 0»9 and 0.5, respectively; the ratios of 

the successive concentrations are 1*5, 3*7 and 1.8, respec­

tively. An a-value on the basis of these figures would be 

in the neighborhood of 2.0, which is In line with the con­

clusion reached above. In the same paper, Bills states 

(p. 56) that the rate of increase of toxicity (as distinct 

from narcotic potency) of the alcohols reaches a maximum 

with propyl, which may explain the unexpected results with 

0.l6 M n-propyl described earlier. Both Bills (1923) and 

Macht (1920) report that lso-alcohols are less toxic than the 

corresponding normal primary alcohols. 
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VI. OPERATIONS ANALYSIS AND A PROPOSAL 

FOR AUTOMATION 

Eight physiological studies have been presented which 

illustrate the potentialities of the photographic velocity 

scanning technique. In collecting the data for these ex­

periments, nearly 800 scanning photographs were examined 

and over 19,000 individual tracks were measured. Nearly 300 

hours were required for the execution of these studies, of 

which a total of 198 hours were allocated to four major 

operations as follows : (a) experimentation (including 

scanning), 12#; (b) film processing, 9#; (c) film inspection 

(track measurement), 63#; and (d) tabulation and graphic 

analysis of data, 16#* Operations involving measuring and 

data handling thus account for 80# of the time required for 

this research. Stated in another way, for every hour spent 

in performing actual experimental work, eight additional 

hours were spent in making track measurements and processing 

data. Fortunately, the two operations which are most tedi­

ous and time-consuming, and which greatly reduce the overall 

efficiency of the photographic scanning technique, are also 

those which are most susceptible to electronic automation 

methods. Proposals for automatic track measuring and data 
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processing will now be considered. 

Seven main operations are involved in the preparation 

from a scanning photograph of a rate-time curve representing 

the locomotor activities of cells. These are: (1) observa­

tion (inspection of the photographic record); (2) mensura­

tion (measurement of the length of individual tracks); (3) 

tabulation of data (recording of the length measurements and 

other numerical data); (4) enumeration (counting of tracks 

measured on each scanning photograph); (5) summation (adding 

the lengths of all tracks measured on a given scanning photo­

graph); (6) computation (calculation of the mean track length 

from each set of measurements); and (?) presentation of re­

sults (preparation of a graph showing the relationship be­

tween mean track length and time of exposure). From the 

point of view of electronic automation, these operations may 

be categorized as scanning (1), computation (2 through 6), 

and read-out (?)• 

Fortunately, track images are sharply defined on photo­

graphic negatives as opaque (black) lines on a transparent 

background. As such they are susceptible to inspection by 

an electronic technique known as flying-spot scanning (Mans-

berg, 1957)» The principal elements of a flying-spot scanner 

are (1) a high-resolution cathode ray oscilloscope; (2) a 

photomultlpller; (3) an optical system Joining the oscillo­

scope and photomultlpller; and (4) some type of digital 
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electronic computer. The flying spot is produced by focus­

ing the beam of the oscilloscope to a very small, bright 

point. Electrical controls cause the spot to move horizon­

tally across the oscilloscope screen at a constant rate and 

in a single direction. Between successive traverses, the 

beam is advanced along the vertical axis of the screen a 

distance equal to its own diameter. The spot thus sweeps 

the screen much as the eyes of a reader move across and down 

the lines of type on a printed page. 

By means of a system of lenses, the image of the os­

cilloscope screen is focused in the plane of the scanning 

field, which contains entitles to be enumerated or measured. 

This field and the superimposed screen image are surveyed 

from the opposite side by the photomultiplier tube. As the 

image of the bright point on the oscilloscope screen moves 

across the scanning field it crosses and is occulted (blocked 

out) by objects in its path. The photomultiplier translates 

the resulting changes in light intensity into electrical 

impulses which are fed into the digital computer for pro­

cessing and interpretation. The computer, in turn, prints 

out the results or displays them as traces on the coordinate 

field of an oscilloscope screen. 

Such a system is more than a mere theoretical possi­

bility; it is a practical, working reality. In view of the 

evidence which has been presented in preceding pages, there 
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Is every reason to believe that a photo-electronic locomo­

tion analyzer, combining the desirable features of photo­

graphic and electronic scanning and automatic electronic 

data processing, would have Innumerable useful applications 

in experimental and applied biology. It is the author's 

hope that the development of such an instrument can be under­

taken as an extension of the research reported in this 

thesis. 
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VII. SUMMARY 

1. Bate of locomotion as an Indicator of physiologi­

cal state In microorganisms has been considered. 

2. Direct, photographic and electronic methods for 

determining the rate of locomotion of microorganisms have 

been reviewed. 

3. Apparatus and techniques of an Improved photo­

graphic scanning technique have been described in detail. 

4. Experiments illustrating research applications of 

the photographic scanning technique have been performed with 

Paramecium caudaturn. 

5. Experimental data have been presented which indi­

cate (a) the relationship between rate of locomotion and 

environmental temperature, osmotic pressure and pH; and (b) 

the effect on rate of locomotion of various chemical in­

fluences, including acetylcholine, adrenaline, sodium cyanide, 

urethane and various alcohols* 

6. Results of experiments have been Interpreted and 

discussed in relation to published literature. 

?e Photographic scanning operations have been statis­

tically analyzed. 

8. Development of an automatic photo-electronic loco­

motion analyzer has been proposed. 



www.manaraa.com

98 

VIII. LIST OF REFERENCES 

Arisz, W. H., I. J. Camphuis, H. Heikene and A. J. van 
Tooren. 1955» The secretion of the salt glands of Llmonium 
latifolium Ktze. Acta. Bot. Meerl. 4:321-338. 

Baker, F. N., R. G-. Oragle, G-. W. Salisbury and H. L. 
VanDemark. 1957» Spermatozoan velocities in vitro. A 
simple method of measurement. Pert, and Ster. 8:149-155* 

Bayer, G. und T. Wense. 1936. Uber den Nachv/eis von 
Hormonen im einzelllgen Tieren. I. Cholin and Acetylcholin 
im Paramecium. Pflug. Arch. ges. Physiol» 237:417-422. 

Belehrâdek, J. 1935» Temperature and living matter. 
Gebruder Borntraeger, Berlin. 

Bills, C. E. 1923* A pharmacological comparison of 
six alcohols, singly and in admixture, on Paramecium. J. 
Pharmacol. 22:49-57» 

Boell, E. J. 1942. The effect of respiratory inhibi­
tions on the oxygen consumption of Paramecium calkins. 
Anat. Rec. 84:493-494. 

Brokaw, 0. J. 1957» Electro-chemical orientation of 
bracken spermatozolds. Nature, London. 179ï525» 

Brokaw, 0. J. 1958. Chemotaxis of bracken spermato­
zoïde. J. exp. Biol. 35:192-212. 

Chase, A. M. and o. G-laser. 1930. Forward movement of 
Paramecium as a function of the hydrogen-ion concentration. 
J. gen. Physiol. 13:627-636. 

Clark, ¥. M. 1928. The determination of hydrogen ions. 
3rd edition. Williams and Wilkins Company, Baltimore. 

Cole, W. H. 1925. Pulsation of the contractile 
vacuole of Paramecium as affected by temperature. J. gen. 
Physiol. 7:581-586. 



www.manaraa.com

99 

Cole, W. H. 1938. Chemical stimulation in animals. 
Sigma XI Quart. 26:129-135* 

Comandon, J. 1917» Phagocytose in vitro des hémato­
zoaires du Calfat (enregistrement cinématographique). C. 
R. Soc. Blol., Paris. 80:314-316. 

Comandon, J. 1919» Tactlame produit par l'amidon sur 
les leucocytes enrobement du charbon. C. H. Soc. Blol., 
Paris. 82:1171-1174. 

DuShane, Graham. 1956. Instruments and man. Science. 
124:771. 

Ferguson, M. L. 1955* Photographie method for deter­
mining velocity distribution in populations of paramecia. 
Unpublished M* S. Thesis. Iowa State College Library, Ames, 
Iowa. 

Ferguson, M. L. 1957» Photographic technique for 
quantitative physiological studies of paramecia and other 
motile cells. Physiol. Zobl. 30:208-215. 

Frisch, J. A. 1937* The rate of pulsation and the 
function of the contractile vacuole in Paramecium multi-
mlcronucleatum. Arch. Protistenk. 90:123-161. 

Saw, E. Z. 1936. Physiology of the contractile vacuole 
in cillâtes. 1. Effects of osmotic pressure. 2. Effects 
of hydrogen ion concentration. 3» Effect of temperature. 
4. affect of heavy water. Arch. Protistenk. 87:185-224. 

Gebauer, H. 1930. Zur Kenntnis der Galvanotaxis von 
Polytoma uvella und einigen anderen Volvocineen. Beltr. 
Blol. Pfl. 18:463-500. 

Gerard, R. W. and L. H. Hyman. 1931» The cyanide in-
sensitivity of Paramecium. Amer. J. Physiol. 97:524-525. 

Glaser, 0. 1924. Temperature and the forward movement 
of Paramecium. J. gen. Physiol. 7:177-189* 

Harris, H. 1953* Chemotaxis of granulocytes. J. Path. 
Bact. 66:135-146. 

Jacobs, M. H. 1919. Acclimatization as a factor affect­
ing the upper thermal death points of organisms. J. exp. 
Zool. 27:427-442. 



www.manaraa.com

100 

Johnson, P. H. 1951. Luminous bacteria. In Werkman, 
0. H. and P. W. Wilson, ede. Bacterial physiology, ch. 20. 
Academic Press, Hew York. 

Johnson, P. H., ed. 1957. Influence of temperature 
on biological systems. Waverly Press, Inc., Baltimore. 

Jones, E. E. and J. R. Fields. 1954. An inexpensive 
photorn1erographic camera and electric timer, Part 2. Tur-
tox News. 32;16-17. 

Kamada, T* 1928-31* Polar effects of electric current 
on the ciliary movements of Paramecium. J. Fac. Sci. Tokyo 
Univ. (Section 4, Zoology). 2:285-298. 

Kamada, 5. 1935-38. Diameter of contractile vacuole 
in Paramecium. J. Fac. Sci. Tokyo Univ. (Section 4, Zoology). 
4:195-202. 

Lee, J. Warren. 1942a. The effect of temperature on 
the rate of food-vacuole formation in Paramecium. Physiol. 
Zool. 15:453-458. 

Lee, J. Warren. 1942b. The effect of pH on food-
vacuole formation in Paramecium. Physiol. Zoôl. 15:459-465. 

Lee, J. W. and A. Klaln. 1954. A simple apparatus for 
the study of temperature effects on the rate of locomotion 
in protozoa. Trans. Amer. micr. Soc. 73:218-219» 

Lengerovâ, A. 1955» A method for evaluating the effect 
of ionising radiation on microorganisms. Fol. Biol., Prague. 
1:54-61. 

Lohner, L. and B. E. Markovits. 1922. Zur Kenntnis 
der ollgodynamischen Metallgiftwlrkungen auf die lebendlge 
Substanz: 1. Paramaecienversuche. Pflug. Arch. gee. 
Physiol. 195:417-431. 

Lund, Hi. J. 1918. Quantitative studies on intracel­
lular respiration. 2. The rate of oxidation in Paramecium 
caudaturn and its independence of the toxic action of KNC. 
Amer. J. Physiol. 45:365-373. 

Lund, B. L. 1918. The toxic action of KCN and its 
relation to the state of nutrition and age of the cell as 
shown by Paramecium and Didinium. Biol. Bull., Wood's Hole. 
35:211-231. 



www.manaraa.com

101 

Lund, E. J. 1921. Quantitative studies on intracel­
lular respiration. 5* The nature of the action of KCN on 
Paramecium and planaria, with an experimental test of criti­
cism and certain explanations offered by Child and others. 
Amer. J. Physiol. 57:336-3^9» 

Macht, E. 1920. A toxieological study of some alcohols, 
with especial reference to isomers. J. Pharmacol* 16:1 

Mansberg, H. P. 1957. Automatic particle and bacterial 
colony counter. Science. 126:823-827» 

Mille, S. M. 1931. The effect of the H-lon concentra­
tion on protozoa, as demonstrated by the rate of food vacuole 
formation in Colpidium. J. exp. Biol. 8:17-30. 

Mitchell, W. H. 1929. The division rate of Paramecium 
in relation to temperature. J. exp. Zool. 54:383-410. 

Moeller, A. N» and N. L. VanDemark. 1955» In vitro 
speeds of bovine spermatozoa. Pert, and Ster. 6:506-512. 

Morgan, W. D. 1953» The New Leica Manual. 12th edi­
tion. Morgan and Lester, New York. 

Nagai, H. 1907. Der Einfluss verschiedener Narcotics, 
Gase und Salze auf die Schwimmgeschwindigkeit von Paramaeciuia. 
Z. allg. Physiol. 6:195-212. 

Nlethammer, A. 1927» Die Stlmulationswirkung von 
Giften auf Pilze und das Arndt-Schulzche Gesetz» Biochem. Z. 
184:370-382. 

Ormsbee, R. A. and K. C. Fisher. 1943» The effect of 
urethane on the consumption of oxygen and the rate of cell 
division in the ci11ate Tetrahymena gelell. J. gen. Physiol. 
27:461-468. 

Pace, D. M. 1945» The effect of cyanide on respiration 
in Paramecium caudaturn and Paramecium aurelia. Biol. Bull., 
Wood's Hole. 89:76-83» 

Pace, D. M. and K. K. Kimura. 1944. The effect of 
temperature on respiration in Paramecium aurelia and Para­
mecium caudatum. J. cell. comp. Physiol. 24:173-183» 

Precht, H», J. Christopher sen und K. Hensel. 1955* 
Temperatur und Leben. Springer, Berlin. 



www.manaraa.com

102 

Rlkmenspoel, R. 1957* Photoelectric and cinemato­
graphic measurements of the "motility" of "bull sperm cells» 
Smitz, Utrecht. 

Rothschild, Lord. 1956. Sea-urchin spermatozoa. 
Endeavour. 15(58):79-86. 

Rothschild, Lord and M. K. Swann. 1948. The ferti­
lization reaction in the sea-urchin egg. A propagated re­
sponse to sperm attachment. J. exp. Blol. 26:164-176. 

Sato, T. und E. Tamiya. 1937* Uher die Atmungsfarb-
stoffe von Paramecium. Cytologia (Fuji! Jubilee Volume, 
Part 1):1133-1138. 

Schlenk> Wilhelm Jr. und Hermann Kahmann. 1937» Re-
aktionskinetische Untersuchung der Bewegung der Forellen-
spermatozoen. Z. wise. Biol. 24:518-531* 

Seaman, G-. R. and R. K. Houlihan. 1951* Enzyme systems 
in Tetrahymena geleii S. 2. Acetycholinesterase activity. 
Its relation to motility of the organism and to coordinated 
ciliary action in general. J. cell, conro. Physiol. 37:309-
321. 

Shoup, 0. S. and J. T. Boykin. 1931* The Insensitlv-
ity of Paramecium to cyanide and effects of iron on respira­
tion. J. gen. Physiol. 15:107-118. 

Strehler, B. L. 1955* Factors and biochemistry of 
bacterial luminescence. In Johnson, F. H., ed. The lumi­
nescence of biological systems, pp. 209-240. A. A. A. S. 

Thimann, K. V. 1956. Promotion and inhibition: twin 
themes of physiology. Amer. Nat. 90:145-162. 

Traube, J. 1904. Theorie der Osmose und Narkose. 
Pflug. Arch. ges. Physiol. 105:541-558. 

VanDemark, N. L., G. W. Salisbury and A. N. Moeller. 
1958. Explanation of electronic methods for evaluating 
sperm motility. Science. 127:286-287. 

Van Wagtendonk, W. J. and L. P. Zill. 1947. Inaetiva-
tion of paramecin ("Killer15 substance of Paramecium aurelia 
51, variety 4) at different hydrogen ion concentrations and 
temperatures. J. blol. Chem. 171:595-603. 



www.manaraa.com

103 

von Dach, Herman. 1950. Effect of high osmotic pres­
sures on growth and respiration of a fresh-water flagellate, 
Astasia Klebsll. J. exp. Zool. 115:1-15* 

Wenrich, D. H. 1928. Eight well-defined species of 
Paramecium (Protozoa, Cillata)• Trans. Amer, micr, Soc. 
47:275-282. 

Wense, T. 1935» Colloidal changes Indicated by ex­
periments on Paramecium caudatum as the basis of sympathetic 
nervous processes. Arch. exp. Path. Pharmak. 179:475* 

Wingo, V. J. and I. Browning. 1951* Measurement of 
swimming speed of Tetrahymena geleil by stroboscoplc photo­
micrography. J. exp. Zool. 117:441-449» 



www.manaraa.com

104 

IX. ACKNOWLEDGMENTS 

The author gratefully acknowledges assistance from many 

sources» He wishes in particular to thank Mr. John Boehlje 

for help in the measurement of tracks; Dr» John G. Bowne, 

Division of Veterinary Medicine, for the loan of developing 

trays used in the preparation of thesis illustrations; Dr. 

C. J. Brokaw, Department of Zoology, University of Cambridge, 

England, and Dr. Miklos Muller, Department of Histology, 

Budapest! Orvostudomanyi Egyetem, Budapest, Hungary, for 

personal correspondence and several valuable references re­

lating to applications of photographic techniques in the 

study of microorganisms; Mr. I. A. Coleman, Superintendent of 

Shops, and other members of the Iowa State University Instru­

ment Shop for technical advice and machine work; Mr» Lou 

Facto and Mr. Charles Benn, Information Service Photographic 

Laboratory, for technical advice and help in the procure­

ment of equipment and supplies used in the preparation of 

thesis Illustrations; Mr. Louis Hein, Department of Physics, 

for the loan of various pieces of equipment; Dr. William D. 

Hughes, Electrical Engineering, for making the scanning ex­

posure interval measurements which appear in Table 2, page 23, 

of this thesis; Dr. John E. Sags, Department of Botany, and 



www.manaraa.com

105 

Mr» Lavern C. Paulson, in charge of inventory, for aiding in 

the procurement of equipment: the Department of Zoology and 

Entomology and the Iowa State University Industrial Science 

Research Institute for facilities, equipment and financial 

assistance; Dr. Oscar E. Stauber, Department of Zoology and 

Entomology, the author1 s major professor, and other members 

of the author1e graduate committee, including Dr. Howard L« 

Hamilton of the Department of Zoology and Entomology, Dr. 

John E. Sags of the Department of Botany, Dr. Joseph G. O'Mara 

of the Department of Genetics, and Dr. George H. Bowen of 

the Department of Physics, for helpful advice, criticism and 

encouragement; and Mrs. Jean A. Ferguson, the author's wife, 

for typing and proof-reading the thesis manuscript and for 

helping so patiently in so many other ways for so many years. 


	1959
	Photographic scanning and its application in the general physiology of motile cells
	Marion Lee Ferguson
	Recommended Citation


	tmp.1411078325.pdf.h4ll_

